A novel electrosynthetic method has been introduced based on alternate layer-by-layered self-assembly of conjugated/unconjugated Salen-based nanowires as a capacitive pseudo-supercapacitor. For this purpose, a three-electrode system consisted of a glassy carbon (GC), Ag/AgCl (Sat’d Cl−) and a Pt rod as working, reference, and counter electrodes, respectively. The electrolyte included the same molar concentration (0.040 mol L−1) of each Salen monomer (as initial precursor), and KCl solution (as supporting electrolyte), besides using KOH solution (0.01 mol L−1, as basic-controlling reagent) inside acetone/water (4:1, V/V) as a solvent. The formation of this self-assembly nanowire was attributed to the control of the electrical conductivity of this polymer during formation of an organometallic complex with K+ as responsible complex forming agent. This novel nanowire then played role as a capacitive pseudo-supercapacitor. Based on the chrono—potentiometry, reproducible charge/discharge process for at least 5000 cycles was observed at a potential between − 2.00 and + 1.75 V (vs. Ag/AgCl). The capacity behavior of the polymer was also evidenced using electrochemical impedance spectroscopy. This synthesized polymeric nanowire was adopted as the acceptable pseudo-supercapacitor with real capacity equals to 3110 ± 6 (n = 3) C g−1. This study was considered as the first report at which the self—assembly of organometallic compounds as an efficient pseudo—supercapacitor was introduced.
Abstract-A novel humidity optical sensor was fabricated based on adsorption of water vapor via the hydrochromic reflective filtration behavior of conjugated Salen polymer, immobilized on the surface of a glassy carbon (GC) electrode by cyclic voltammetry (CV
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.