Despite undergoing normal development and acquiring normal morphology and motility, mutations in spe-38 or trp-3/spe-41 cause identical phenotypes in Caenorhabditis elegans – mutant sperm fail to fertilize oocytes despite direct contact. SPE-38 is a novel, four-pass transmembrane protein and TRP-3/SPE-41 is a Ca2+-permeable channel. Localization of both of these proteins is confined to the membranous organelles (MOs) in undifferentiated spermatids. In mature spermatozoa, SPE-38 is localized to the pseudopod and TRP-3/SPE-41 is localized to the whole plasma membrane. Here we show that the dynamic redistribution of TRP-3/SPE-41 from MOs to the plasma membrane is dependent on SPE-38. In spe-38 mutant spermatozoa, TRP-3/SPE-41 is trapped within the MOs and fails to reach the cell surface despite MO fusion with the plasma membrane. Split-ubiquitin yeast-two-hybrid analyses revealed that the cell surface localization of TRP-3/SPE-41 is likely regulated by SPE-38 through a direct protein-protein interaction mechanism. We have identified sequences that influence the physical interaction between SPE-38 and TRP-3/SPE-41, and show that these sequences in SPE-38 are required for fertility in transgenic animals. Despite the mislocalization of TRP-3/SPE-41 in spe-38 mutant spermatozoa, ionomycin or thapsigargin induced influx of Ca2+ remains unperturbed. This work reveals a new paradigm for the regulated surface localization of a Ca2+-permeable channel.
SUMMARY
Fertilization is a conserved process in all sexually reproducing organisms whereby sperm bind and fuse with oocytes. Despite the importance of sperm-oocyte interactions in fertilization, the molecular underpinnings of this process are still not well understood. The only cognate ligand-receptor pair identified in the context of fertilization is sperm-surface Izumo and egg-surface Juno in mouse [1]. Here we describe a genetic screening strategy to isolate fertilization mutants in Caenorhabditis elegans in order to generate a more complete inventory of molecules required for gamete interactions. From this screening strategy, we identified, cloned, and characterized spe-45, a gene that encodes an Izumo-like immunoglobulin superfamily protein. Mammalian Izumo is required for male fertility and has the same basic mutant phenotype as spe-45. Worms lacking spe-45 function produce morphologically normal and motile sperm that cannot fuse with oocytes despite direct contact in the reproductive tract. The power of this screen to identify proteins with ancient sperm functions suggests that characterization of additional mutants from our screen may reveal other deeply conserved components in fertility pathways and complement studies in other organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.