This paper provides an update on the fast‐evolving field of the induced polarization method applied to biogeophysics. It emphasizes recent advances in the understanding of the induced polarization signals stemming from biological materials and their activity, points out new developments and applications, and identifies existing knowledge gaps. The focus of this review is on the application of induced polarization to study living organisms: soil microorganisms and plants (both roots and stems). We first discuss observed links between the induced polarization signal and microbial cell structure, activity and biofilm formation. We provide an up‐to‐date conceptual model of the electrical behaviour of the microbial cells and biofilms under the influence of an external electrical field. We also review the latest biogeophysical studies, including work on hydrocarbon biodegradation, contaminant sequestration, soil strengthening and peatland characterization. We then elaborate on the induced polarization signature of the plant‐root zone, relying on a conceptual model for the generation of biogeophysical signals from a plant‐root cell. First laboratory experiments show that single roots and root system are highly polarizable. They also present encouraging results for imaging root systems embedded in a medium, and gaining information on the mass density distribution, the structure or the physiological characteristics of root systems. In addition, we highlight the application of induced polarization to characterize wood and tree structures through tomography of the stem. Finally, we discuss up‐ and down‐scaling between laboratory and field studies, as well as joint interpretation of induced polarization and other environmental data. We emphasize the need for intermediate‐scale studies and the benefits of using induced polarization as a time‐lapse monitoring method. We conclude with the promising integration of induced polarization in interdisciplinary mechanistic models to better understand and quantify subsurface biogeochemical processes.
Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.
Summary Soil stabilization processes aim at enhancing soil's engineering properties. Although the concept is straight forward, it involves physical and chemical changes to the subsurface that could result in local environmental changes. Compared to conventional soil stabilization methods (such as cement grouting), bio-mediated soil stabilization, such as microbial induced calcite precipitation (MICP), offers the opportunity to minimize environmental impact, but the underlying processes need to be well understood for proper applications. Accurate characterization and long-term monitoring are paramount for the success of soil improvement, especially MICP treatments. Spectral induced polarization (SIP), an established geophysical method, has shown to be sensitive to MICP processes and products (e.g. calcite). In this work, we performed a two-phase study to explore SIP's suitability as a monitoring tool. Phase one involved a laboratory scale MICP study under controlled conditions and phase two a pilot field scale study. In the laboratory, MICP was induced through the introduction of ureolytic microorganisms, while in the field, indigenous soil microbes were stimulated to promote ureolysis. In both cases traditional geochemical monitoring, along with spatiotemporally dense SIP monitoring, were performed. Over the course of the laboratory study, SIP successfully tracked the MICP progress as well as the calcite precipitation behavior. Similarly, the SIP results of the field scale study showed to be sensitive to the subsurface changes in response to MICP. SIP offered spatiotemporally rich information on the MICP progress and process status. The similarity between observed signal trends in the laboratory and field in this study clearly proved that SIP signals from MICP in controlled laboratory environments can be successfully used to study field MICP applications despite scale and complexity differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.