Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Background Pathological forms of TAR DNA-binding protein 43 (TDP-43) are present in motor neurons of almost all amyotrophic lateral sclerosis (ALS) patients, and mutations in TDP-43 are also present in ALS. Loss and gain of TDP-43 functions are implicated in pathogenesis, but the mechanisms are unclear. While the RNA functions of TDP-43 have been widely investigated, its DNA binding roles remain unclear. However, recent studies have implicated a role for TDP-43 in the DNA damage response. Methods We used NSC-34 motor neuron-like cells and primary cortical neurons expressing wildtype TDP-43 or TDP-43 ALS associated mutants (A315T, Q331K), in which DNA damage was induced by etoposide or H2O2 treatment. We investigated the consequences of depletion of TDP-43 on DNA repair using small interfering RNAs. Specific non homologous end joining (NHEJ) reporters (EJ5GFP and EJ2GFP) and cells lacking DNA-dependent serine/threonine protein kinase (DNA-PK) were used to investigate the role of TDP-43 in DNA repair. To investigate the recruitment of TDP-43 to sites of DNA damage we used single molecule super-resolution microscopy and a co-immunoprecipitation assay. We also investigated DNA damage in an ALS transgenic mouse model, in which TDP-43 accumulates pathologically in the cytoplasm. We also examined fibroblasts derived from ALS patients bearing the TDP-43 M337V mutation for evidence of DNA damage. Results We demonstrate that wildtype TDP-43 is recruited to sites of DNA damage where it participates in classical NHEJ DNA repair. However, ALS-associated TDP-43 mutants lose this activity, which induces DNA damage. Furthermore, DNA damage is present in mice displaying TDP-43 pathology, implying an active role in neurodegeneration. Additionally, DNA damage triggers features typical of TDP-43 pathology; cytoplasmic mis-localisation and stress granule formation. Similarly, inhibition of NHEJ induces TDP-43 mis-localisation to the cytoplasm. Conclusions This study reveals that TDP-43 functions in DNA repair, but loss of this function triggers DNA damage and is associated with key pathological features of ALS.
Alzheimer's disease (AD) is the most common form of dementia. It is characterized by beta-amyloid (Aβ) peptide fibrils, which are extracellular depositions of a specific protein, and is accompanied by extensive neuroinflammation. Various studies have demonstrated risk factors that can affect AD pathogenesis, and they include accumulation of Aβ, hyperphosphorylation of tau protein, and neuroinflammation. Among these detrimental factors, neuroinflammation has been highlighted by epidemiologic studies suggesting that use of anti-inflammatory drugs could significantly reduce the incidence of AD. Evidence suggests that astrocytes, microglia, and infiltrating immune cells from periphery might contribute to or modify the process of neuroinflammation and neurodegeneration in AD brains. In addition, recent data indicate that microRNAs may affect neuroinflammatory responses in the brain. This article focuses on supportive evidence that neuroinflammation plays a critical role in AD development. In addition, we depict putative therapeutic capacity of anti-inflammatory drugs for AD prevention or treatment. We also discuss pathogenic mechanisms by which astrocytes, microglia, T cells and microRNA participate in AD and the neuroprotective mechanisms of anti-inflammatory drugs.
Pathological forms of TAR DNA-binding protein 43 (TDP-43) are present in almost all cases of amyotrophic lateral sclerosis (ALS), and 20% of familial ALS cases are due to mutations in superoxide dismutase 1 (SOD1). Redox regulation is critical to maintain cellular homeostasis, although how this relates to ALS is unclear. Here, we demonstrate that the redox function of protein disulfide isomerase (PDI) is protective against protein misfolding, cytoplasmic mislocalization of TDP-43, ER stress, ER-Golgi transport dysfunction, and apoptosis in neuronal cells expressing mutant TDP-43 or SOD1, and motor impairment in zebrafish expressing mutant SOD1. Moreover, previously described PDI mutants present in patients with ALS (D292N, R300H) lack redox activity and were not protective against ALS phenotypes. Hence, these findings implicate the redox activity of PDI centrally in ALS, linking it to multiple cellular processes. They also imply that therapeutics based on PDI's redox activity will be beneficial in ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.