Purpose: As foremost regulators of cancer-related inflammation and immunotherapeutic resistance, tumor-associated macrophages have garnered major interest as immunotherapeutic drug targets. However, depletory strategies have yielded little benefit in clinical studies to date. An alternative approach is to exploit macrophage plasticity and "reeducate" tumorigenic macrophages toward an immunostimulatory phenotype to activate the host's antitumor immunity.Experimental Design: We investigated the role of the macrophage scavenger receptor common lymphatic endothelial and vascular endothelial receptor-1 (Clever-1) on tumor growth in multiple mouse cancer models with inflammatory and noninflammatory characteristics by using conditional knockouts, bone marrow chimeras, and cell depletion experiments. In addition, the efficacy of immunotherapeutic Clever-1 blockade as monotherapy or in combination with anti-PD-1 was tested.Results: Genetic deficiency of macrophage Clever-1 markedly impaired solid tumor growth. This effect was mediated by macrophages that became immunostimulatory in the absence of Clever-1, skewing the suppressive tumor microenvironment toward inflammation and activating endogenous antitumor CD8 þ T cells. Comparable effects were achieved with immunotherapeutic blockade of Clever-1. Notably, these effects were similar to those achieved by PD-1 checkpoint inhibition. Moreover, combining anti-Clever-1 with anti-PD-1 provided synergistic benefit in aggressive, nonresponsive tumors.Conclusions: These findings demonstrate the importance of macrophages in mediating antitumor immune responses and support the clinical evaluation of immunotherapeutic Clever-1 blockade as a novel cancer treatment strategy.
Lymphocytes recirculate continuously between the blood and lymphoid organs, a process that is of fundamental importance for proper functioning of the immune system. The molecular mechanisms underlying lymphocyte trafficking to the spleen remain an enigma. Here, we show that lymphocytes enter the spleen preferentially from vessels in the red pulp rather than the marginal sinus or the vasculature in the white pulp. Ex vivo adhesion assays in mice and humans, together with genetic ablation of Clever-1 in mice, indicate that CD8+T cell and B220+B cell homing to the spleen via the red pulp is Clever-1 dependent. Moreover, absence of Clever-1 leads to down-regulation of the B cell attractant chemokine, CXCL13, on spleen endothelium. CXCL13 is known to guide B cell trafficking to lymphoid organs, and its lack may contribute to the observed decrease in B cell trafficking into the spleen as well. In summary, this study identifies Clever-1 as an important molecule controlling lymphocyte entry into the spleen, along with a critical role for the splenic red pulp in this regulated trafficking. Furthermore, the results demonstrate that location-specific homing-associated molecules guide lymphocyte entry into the spleen.
Clever-1 also known as Stabilin-1 and FEEL-1 is a scavenger molecule expressed on a subpopulation of anti-inflammatory macrophages and lymphatic endothelial cells (LECs). However, its role in regulating dendritic cell (DC) trafficking and subsequent effects on immunity have remained unexplored. In this study, we demonstrate that DC trafficking from the skin into the draining lymph nodes is compromised in the absence of Clever-1. By adoptive transfer approaches we further show that the poor trafficking is due to the impaired entrance of DCs into afferent lymphatics. Despite this, injections of ovalbumin-loaded DCs into the footpads induced a stronger proliferative response of OT II T cells in the draining lymph nodes. This could be explained by the increased MHC II expression on DCs and a less tolerogenic phenotype of LECs in lymph nodes of Clever-1 knockout mice. Thus, although fewer DCs reach the nodes, they are more active in creating antigen-specific immune responses. This suggests that the DCs migrating to the draining lymph node within Clever-1 positive lymphatics experience immunosuppressive interactions with LECs. In conclusion, besides being a trafficking molecule on lymphatic vasculature Clever-1 is immunosuppressive towards migrating DCs and thus, regulates the magnitude of immune responses created by incoming DCs in the draining lymph nodes.
BackgroundVascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial cell molecule and primary amine oxidase that mediates leukocyte entry to sites of inflammation. However, there is limited knowledge of the inflammation-related expression of VAP-1 in the central nervous system (CNS). Therefore, we investigated the expression of VAP-1 within the CNS vasculature in two focal rat models of experimental autoimmune encephalomyelitis (EAE) mimicking multiple sclerosis (MS).MethodsEAE was induced either with Bacillus Calmette-Guérin, resulting in a delayed-type hypersensitivity-like pathogenesis (fDTH-EAE), or with myelin oligodendrocyte glycoprotein (fMOG-EAE). A subgroup of fMOG-EAE rats were treated daily with a selective VAP-1 inhibitor (LJP1586; 5 mg/kg). On 3 and 14 days after lesion activation, rat brains were assessed using magnetic resonance imaging (MRI), and ex vivo autoradiography was conducted to evaluate the binding of Gallium-68-labelled VAP-1 ligand. Histology and immunohistochemistry (OX-42, VAP-1, intercellular adhesion protein-1 [ICAM-1], P-selectin) supported the ex vivo autoradiography.ResultsEAE lesions showed MRI-detectable signal changes and binding of the VAP-1-targeting radiotracer in both rat models. Some of the VAP-1 positive vessels showed morphological features typical for high endothelial-like venules at sites of inflammation. Inhibition of VAP-1 activity with small molecule inhibitor, LJP1586, decreased lymphocyte density in the acute inflammatory phase of fMOG-EAE lesions (day 3, P = 0.026 vs. untreated), but not in the remission phase (day 14, P = 0.70 vs. untreated), and had no effect on the amount of OX-42-positive cells in either phase. LJP1586 treatment reduced VAP-1 and ICAM-1 expression in the acute inflammatory phase, whereas P-selectin remained not detectable at all studied stages of the disease.ConclusionsOur results revealed that VAP-1 is expressed and functionally active in vasculature within the induced focal EAE lesions during the acute phase of inflammation and remains expressed after the acute inflammation has subsided. The study indicates that VAP-1 is actively involved in the development of inflammatory CNS lesions. During this process, the endothelial cell lesion-related vasculature seem to undergo a structural transformation from regular flat-walled endothelium to HEV-like endothelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.