The prevailing trend of increasing urbanization and habitat fragmentation makes knowledge of species’ habitat requirements and distribution a crucial factor in conservation and urban planning. Species distribution models (SDMs) offer powerful toolboxes for discriminating the underlying environmental factors driving habitat suitability. Nevertheless, challenges in SDMs emerge if multiple data sets - often sampled with different intention and therefore sampling scheme – can complement each other and increase predictive accuracy. Here, we investigate the potential of using recent data integration techniques to model potential habitat and movement corridors for Eurasian red squirrels (Sciurus vulgaris), in an urban area. We constructed hierarchical models integrating data sets of different quality stemming from unstructured on one side and semi-structured wildlife observation campaigns on the other side in a combined likelihood approach and compared the results to modeling techniques based on only one data source - wherein all models were fit with the same selection of environmental variables. Our study highlights the increasing importance of considering multiple data sets for SDMs to enhance their predictive performance. We finally used Circuitscape (version 4.0.5) on the most robust SDM to delineate suitable movement corridors for red squirrels as a basis for planning road mortality mitigation measures. Our results indicate that even though red squirrels are common, urban habitats are rather small and partially lack connectivity along natural connectivity corridors in Berlin. Thus, additional fragmentation could bring the species closer to its limit to persist in urban environments, where our results can act as a template for conservation and management implications.
Northern Bald Ibis (NBI) have disappeared from Europe already in Middle Age. Since 2003 a migratory population is reintroduced in Central Europe. We conducted demographic analyses of survival and reproduction of 384 NBI over a period of 12 years (2008-2019). These data also formed the basis for a population viability analysis (PVA) simulating the possible future development of the NBI population in different scenarios. We tested life-stage specific survival rates for differences between these stages, raising types and colonies as well as the influence of stochastic events and NBI supplements on the population growth. Stage specific survival rates ranged from 0.64 to 0.78. 61% of the mature females reproduce with a mean fecundity of 2.15 fledglings per nest. The complementary PVA indicated that the release population is close to self-sustainability with a given lambda 0.95 and 24% extinction probability within 50 years. Of the 326 future scenarios tested, 94 % reached the criteria of <5% extinction probability and population growth rates >1. In case of positive population growth, stochastic events had a limited effect. Of 820 sub-scenarios with different stochastic event frequencies and severities 87 % show population growth despite the occurrence of stochastic events. Predictions can be made based on the results of the individual-based model as to whether and under what circumstances the reintroduced NBI population can survive. This study shows that a PVA can support reintroduction success that should work closely together with the project in the field for mutual benefit, to optimize future management decisions.
The northern bald ibis Geronticus eremita disappeared from Europe in the Middle Ages. Since 2003 a migratory population has been reintroduced in Central Europe. We conducted demographic analyses of the survival and reproduction of 384 northern bald ibises over a period of 12 years (2008–2019). These data also formed the basis for a population viability analysis simulating the possible future development of the northern bald ibis population under different scenarios. We analysed life stage-specific survival rates, rearing protocols and colonies, and the influence of stochastic catastrophic events and reinforcement translocations on population growth. Life stage-specific survival probabilities were 0.64–0.78. Forty-five per cent of the mature females reproduced, with a mean fecundity of 2.15 fledglings per nest. The complementary population viability analysis indicated that the Waldrappteam population is close to self-sustainability, with an estimated population growth rate of 0.95 and a 24% extinction probability within 50 years. Of the 326 future scenarios tested, 94% reached the criteria of extinction probabilities < 5% and population growth rates > 1. Stochastic catastrophic events had only a limited effect. Despite comparatively high survival and fecundity rates the population viability analysis indicated that to achieve self-sustainability the Waldrappteam population needs further translocations to support population growth and the implementation of effective measures against major mortality threats: illegal hunting in Italy and electrocution on unsecured power poles. The findings of this study are to be implemented as part of a second European LIFE project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.