Obstructive sleep apnea (OSA) is the most common and severe breathing dysfunction which frequently freezes the breathing for longer than 10[Formula: see text]s while sleeping. Polysomnography (PSG) is the conventional approach concerning the treatment of OSA detection. But, this approach is a costly and cumbersome process. To overcome the above complication, a satisfactory and novel technique for interpretation of sleep apnea using ECG were recording is under development. The methods for OSA analysis based on ECG were analyzed for numerous years. Early work concentrated on extracting features, which depend entirely on the experience of human specialists. A novel approach for the prediction of sleep apnea disorder based on the convolutional neural network (CNN) using a pre-trained (AlexNet) model is analyzed in this study. After filtering per-minute segment of the single-lead ECG recording accompanied by continuous wavelet transform (CWT), the 2D scalogram images are generated. Finally, CNN based on deep learning algorithm is adopted to enhance the classification performance. The efficiency of the proposed model is compared with the previous methods that used the same datasets. Proposed method based on CNN is able to achieve the accuracy of 86.22% with 90% sensitivity in per-minute segment OSA classification. Based on per-recording OSA diagnosis, our works correctly classify all the abnormal apneic recording with 100% accuracy. Our OSA analysis model using time-frequency scalogram generates excellent independent validation performance with different state-of-the-art OSA classification systems. Experimental results proved that the proposed method produces excellent performance outcomes with low cost and less complexity.
Due to low physical workout, high-calorie intake, and bad behavioral character, people were affected by cardiological disorders. Every instant, one out of four deaths are due to heart-related ailments. Hence, the early diagnosis of a heart is essential. Most of the approaches for automated classification of the heart sound need segmentation of Phonocardiograms (PCG) signal. The main aim of this study was to decline the segmentation process and to estimate the utility for accurate and detailed classification of short unsegmented PCG recording. Based on wavelet decomposition, Hilbert transform, homomorphic filtering, and power spectral density (PSD), the features had been obtained using the beginning 5 second PCG recording. The extracted features were classified using nearest neighbors with Euclidean distances for different values of [Formula: see text] by bootstrapping 50% PCG recording for training and 50% for testing over 100 iterations. The overall accuracy of 100%, 85%, 80.95%, 81.4%, and 98.13% had been achieved for five different datasets using KNN classifiers. The classification performance for analyzing the whole datasets is 90% accuracy with 93% sensitivity and 90% specificity. The classification of unsegmented PCG recording based on an efficient feature extraction is necessary. This paper presents a promising classification performance as compared with the state-of-the-art approaches in short time less complexity.
Diseases associated with the heart are one of the main reasons of death worldwide. Hence, early examination of the heart is important. For analysis of cardiac disorders, a study of heart sounds is a crucial and beneficial approach.Still, automated classification of heart sounds is a challenging task that mainly depends on segmentation of heart sounds and derivation of features using segmented samples. In the literature available for PCG classification provided by PhysioNet/CinC Challenge 2016, most of the research has focused on enhancing the accuracy of the classification model based on complicated segmentation processes and has failed to improve the sensitivity. In this paper, we present an automated heart sound classification by eliminating the segmentation steps using multidomain features, which results in enhanced sensitivity. The study is based on homomorphic envelogram, mel frequency cepstral coefficient (MFCC), power spectral density (PSD), and multidomain feature extraction. The extracted features are trained using the 5-fold cross-validation method based on an ensemble boosting algorithm over 100 independent iterations. Our proposed design is evaluated using public datasets published in PhysioNet/Computers in Cardiology Challenge 2016. Accuracy of 92.47% with improved sensitivity of 94.08% and specificity of 91.95% is achieved using our model. The output performance proves that our proposed model offers superior performance results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.