In the steering system of a passenger car, one of the essential components is the tie rod, and the sub-assembly component is the inner tie rod, which is subject to static and dynamic bearing loads. These bearing loads are the key points to ensure the inner tie rod's performance and total lifetime. A significant drop in the inner tie rod's performance can cause uncomfortable driving conditions and noise during driving. Most of the designs are developed over-safe with bigger ball sizes to fulfill the defined requirements. On the other hand, over-safe design can cause higher prices. In this study, a new small diameter axial bearing system is developed subjected to high wear loads on the inner tie rod. Three design parameters are considered: press force, tempering method, and tempering temperature. A smaller ball diameter design is created during the development phase. After the manufacturing, the inner tie rods are tested concerning the wear test and setting behavior under the maximum loading test. Results have been compared with a bigger ball size design. By changing the production and assembly parameters, optimum assembly conditions have been defined. Functional measurements before and after testing have validated the new smaller ball diameter design for serial usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.