Speech separation is attracting widespread interest due to the sound mixing in real environments in and out door applications. Although the researchers have used many algorithms, the separation rate in the real environment is still poor. This paper presents speech separation using a modified Deep learning neural (DLN) algorithm. Interestingly, the modification has reduced the complexity of the original DLN algorithm, while, high value of separation rate has been gained caused by using Hamming instead of Hanning windows against the other algorithms. The separation rate reaches 98.6%, while, the advancement over the nearest algorithm is 2.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.