Ceramics-ceramic composites in the series (1-x)Li2MoO4-xBaFe12O19 (LMO-BF12, 0.00≤x≤0.15) have been cold sintered at 120 o C and their structure and properties characterized. X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed that compositions were dual phase and had a dense microstructure. Composites in the xBF12-(1-x)LMO (0.0≤x≤0.15) series resonated at MW frequencies (~6GHz) with 5.6≤r≤5.8 and Qf =16,000-22,000 GHz, despite the black colour of compositions with x > 0. The permeability of the composites was measured in the X band (~8 GHz) and showed an increase from 0.94 (x=0.05) to 1.02 (x=0.15). Finite element modelling revealed that the volume fraction of BF12 dictates the conductivity of the material, with a percolation threshold at 10 vol.% BF12 but changes in r as a function of x were readily explained using a series mixing model. In summary, these composites are considered suitable for the fabrication of dual mode or enhanced bandwidth microstrip patch antennas.
In order to monitor the performance and related efficiency of a combined cycle power plant (CCPP), in addition to the best utilization of its power output, it is vital to predict its full load electrical power output. In this paper, the full load electrical power output of CCPP was predicted employing practically efficient machine learning algorithms, including linear regression, ridge regression, lasso regression, elastic net regression, random forest regression, and gradient boost regression. The original data came from an actual confidential power plant, which was working on a full load for 6 years, with four major features: ambient temperature, relative humidity, atmospheric pressure, and exhaust vacuum, and one target (electrical power output per hour). Different regression performance measures were used, including R2 (coefficient of determination), MAE (Mean Absolute Error), MSE (Mean Squared Error), RMSE (Root Mean Squared Error), and MAPE (Mean Absolute Percentage Error). Research results revealed that the gradient boost regression model outperformed other models with and without using the dimensionality reduction technique (PCA) with the highest R2 of 0.912 and 0.872, respectively, and had the lowest MAPE of 0.872 % and 1.039 %, respectively. Moreover, prediction performance dropped slightly after using the dimensionality reduction technique almost in all regression algorithms used. The novelty in this work is summarized in predicting electrical power output in a CCPP based on a few features using simpler algorithms than reported deep learning and neural networks algorithms combined. That means a lower cost and less complicated procedure as per each, however, resulting in practically accepted results according to the evaluation metrics used.
Dementia is a neuropsychiatric brain disorder that usually occurs when one or more brain cells stop working partially or at all. Diagnosis of this disorder in the early phases of the disease is a vital task to rescue patients’ lives from bad consequences and provide them with better healthcare. Machine learning methods have been proven to be accurate in predicting dementia in the early phases of the disease. The prediction of dementia depends heavily on the type of collected data which usually are gathered from Normalized Whole Brain Volume (nWBV) and Atlas Scaling Factor (ASF) which are normally measured and corrected from Magnetic Resonance Imaging (MRIs). Other biological features such as age and gender can also help in the diagnosis of dementia. Although many studies use machine learning for predicting dementia, we could not reach a conclusion on the stability of these methods for which one is more accurate under different experimental conditions. Therefore, this paper investigates the conclusion stability regarding the performance of machine learning algorithms for dementia prediction. To accomplish this, a large number of experiments were run using 7 machine learning algorithms and two feature reduction algorithms namely, Information Gain (IG) and Principal Component Analysis (PCA). To examine the stability of these algorithms, thresholds of feature selection were changed for the IG from 20% to 100% and the PCA dimension from 2 to 8. This has resulted in 7×9 + 7×7= 112 experiments. In each experiment, various classification evaluation data were recorded. The obtained results show that among seven algorithms the support vector machine and Naïve Bayes are the most stable algorithms while changing the selection threshold. Also, it was found that using IG would seem more efficient than using PCA for predicting Dementia. These promising results open the door to a new era of early prognosis of Alzheimer’s Disease and Related Dementias (ADRD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.