Background: Complications of acute myocardial infarction (AMI) with mechanical defects are associated with poor prognosis. Surgical intervention is indicated for a majority of these patients. The goal of surgical intervention is to improve the systolic cardiac function and to achieve a hemodynamic stability. In this present study we reviewed the outcome of patients with post infarction ventricular septal defect (PVSD) who underwent cardiac surgery.
This study aims to (i) demonstrate the efficacy of a new surgical planning framework for complex cardiovascular reconstructions, (ii) develop a computational fluid dynamics (CFD) coupled multi-dimensional shape optimization method to aid patient-specific coronary artery by-pass graft (CABG) design and, (iii) compare the hemodynamic efficiency of the sequential CABG, i.e., raising a daughter parallel branch from the parent CABG in patient-specific 3D settings. Hemodynamic efficiency of patient-specific complete revascularization scenarios for right coronary artery (RCA), left anterior descending artery (LAD), and left circumflex artery (LCX) bypasses were investigated in comparison to the stenosis condition. Multivariate 2D constraint optimization was applied on the left internal mammary artery (LIMA) graft, which was parameterized based on actual surgical settings extracted from 2D CT slices. The objective function was set to minimize the local variation of wall shear stress (WSS) and other hemodynamic indices (energy dissipation, flow deviation angle, average WSS, and vorticity) that correlate with performance of the graft and risk of re-stenosis at the anastomosis zone. Once the optimized 2D graft shape was obtained, it was translated to 3D using an in-house “sketch-based” interactive anatomical editing tool. The final graft design was evaluated using an experimentally validated second-order non-Newtonian CFD solver incorporating resistance based outlet boundary conditions. 3D patient-specific simulations for the healthy coronary anatomy produced realistic coronary flows. All revascularization techniques restored coronary perfusions to the healthy baseline. Multi-scale evaluation of the optimized LIMA graft enabled significant wall shear stress gradient (WSSG) relief (~34%). In comparison to original LIMA graft, sequential graft also lowered the WSSG by 15% proximal to LAD and diagonal bifurcation. The proposed sketch-based surgical planning paradigm evaluated the selected coronary bypass surgery procedures based on acute hemodynamic readjustments of aorta-CA flow. This methodology may provide a rational to aid surgical decision making in time-critical, patient-specific CA bypass operations before in vivo execution.
Although a large variety of animal models for acute ischemia and acute heart failure exist, valuable models for studies on the effect of ventricular assist devices in chronic heart failure are scarce. We established a stable and reproducible animal model of chronic heart failure in sheep and aimed to investigate the hemodynamic changes of this animal model of chronic heart failure in sheep. In five sheep (n = 5, 77 +/- 2 kg), chronic heart failure was induced under fluoroscopic guidance by multiple sequential microembolization through bolus injection of polysterol microspheres (90 microm, n = 25.000) into the left main coronary artery. Coronary microembolization (CME) was repeated up to three times in 2 to 3-week intervals until animals started to develop stable signs of heart failure. During each operation, hemodynamic monitoring was performed through implantation of central venous catheter (central venous pressure [CVP]), arterial pressure line (mean arterial pressure [MAP]), implantation of a right heart catheter {Swan-Ganz catheter (mean pulmonary arterial pressure [PAP mean])}, pulmonary capillary wedge pressure (PCWP), and cardiac output [CO]) as well as pre- and postoperative clinical investigations. All animals were followed for 3 months after first microembolization and then sacrificed for histological examination. All animals developed clinical signs of heart failure as indicated by increased heart rate (HR) at rest (68 +/- 4 bpm [base] to 93 +/- 5 bpm [3 mo][P < 0.05]), increased respiratory rate (RR) at rest (28 +/- 5 [base] to 38 +/- 7 [3 mo][P < 0.05]), and increased body weight 77 +/- 2 kg to 81 +/- 2 kg (P < 0.05) due to pleural effusion, peripheral edema, and ascites. Hemodynamic signs of heart failure were revealed as indicated by increase of HR, RR, CVP, PAP, and PCWP as well as a decrease of CO, stroke volume, and MAP 3 months after the first CME. Multiple sequential intracoronary microembolization can effectively induce myocardial dysfunction with clinical and hemodynamic signs of chronic ischemic cardiomyopathy. The present model may be suitable in experimental work on heart failure and left ventricular assist devices, for example, for studying the impact of mechanical unloading, mechanisms of recovery, and reverse remodeling.
BackgroundLow cardiac output (LCO) after corrective surgery remains a serious complication in pediatric congenital heart diseases (CHD). In the case of refractory LCO, extra corporeal life support (ECLS) extra corporeal membrane oxygenation (ECMO) or ventricle assist devices (VAD) is the final therapeutic option. In the present study we have reviewed the outcomes of pediatric patients after corrective surgery necessitating ECLS and compared outcomes with pediatric patients necessitating ECLS because of dilatated cardiomyopathy (DCM).MethodsA retrospective single-centre cohort study was evaluated in pediatric patients, between 1991 and 2008, that required ECLS. A total of 48 patients received ECLS, of which 23 were male and 25 female. The indications for ECLS included CHD in 32 patients and DCM in 16 patients.ResultsThe mean age was 1.2 ± 3.9 years for CHD patients and 10.4 ± 5.8 years for DCM patients. Twenty-six patients received ECMO and 22 patients received VAD. A total of 15 patients out of 48 survived, 8 were discharged after myocardial recovery and 7 were discharged after successful heart transplantation. The overall mortality in patients with extracorporeal life support was 68%.ConclusionAlthough the use of ECLS shows a significantly high mortality rate it remains the ultimate chance for children. For better results, ECLS should be initiated in the operating room or shortly thereafter. Bridge to heart transplantation should be considered if there is no improvement in cardiac function to avoid irreversible multiorgan failure (MFO).
Aortico-left ventricular tunnel is a rare congenital cardiac anomaly. A 45-year-old man was referred to our clinic with unstable angina pectoris. The patient had an aortico-left ventricular tunnel that had been operated on 15 years before and that now showed a recurrence. We performed a new surgical technique, including closure of orifices of the tunnel by resection of the aorta at the left coronary ostium, reconstruction of the aorta with patch plasty, and formation of a neo-left main branch by applying a saphenous magna vein patch at the noncoronary cusp. In this technique, the possibility of aortic regurgitation caused by stretching and distortion of the aortic ring and leaflets by primary suture closure of tunnel is eliminated. The postoperative 2-D colored Doppler echocardiography and cardiac MRI showed an excellent result of the procedure. Coronary flow could be restored, and thus anginal symptoms disappeared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.