Background Activating mutations in the tyrosine kinase domain of HER2 (ERBB2) have been described in a subset of lung adenocarcinomas (ADCs) and are mutually exclusive with EGFR and KRAS mutations. The prevalence, clinicopathologic characteristics, prognostic implications, and molecular heterogeneity of HER2-mutated lung ADCs are not well established in US patients. Experimental Design Lung ADC samples (n=1478) were first screened for mutations in EGFR (exons 19 and 21) and KRAS (exon 2) and negative cases were then assessed for HER2 mutations (exons 19–20) using a sizing assay and mass spectrometry. Testing for additional recurrent point mutations in EGFR, KRAS, BRAF, NRAS, PIK3CA, MEK1 and AKT was performed by mass spectrometry. ALK rearrangements and HER2 amplification were assessed by FISH. Results We identified 25 cases with HER2 mutations, representing 6% of EGFR/KRAS/ALK-negative specimens. Small insertions in exon 20 accounted for 96% (24/25) of the cases. Compared to insertions in EGFR exon 20, there was less variability, with 83% (20/24) being a 12bp insertion causing duplication of amino acids YVMA at codon 775. Morphologically, 92% (23/25) were moderately or poorly differentiated ADC. HER2 mutation was not associated with concurrent HER2 amplification in 11 cases tested for both. HER2 mutations were more frequent among never-smokers (p<0.0001) but there were no associations with sex, race, or stage. Conclusions HER2 mutations identify a distinct subset of lung ADCs. Given the high prevalence of lung cancer worldwide and the availability of standard and investigational therapies targeting HER2, routine clinical genotyping of lung ADC should include HER2.
Species of Clostridium bacteria are notable for their ability to lyse tumor cells growing in hypoxic environments. We show that an attenuated strain of Clostridium novyi (C. novyi-NT) induces a microscopically precise, tumor-localized response in a rat orthotopic brain tumor model after intratumoral injection. It is well known, however, that experimental models often do not reliably predict the responses of human patients to therapeutic agents. We therefore used naturally occurring canine tumors as a translational bridge to human trials. Canine tumors are more like those of humans because they occur in animals with heterogeneous genetic backgrounds, are of host origin, and are due to spontaneous rather than engineered mutations. We found that intratumoral injection of C. novyi-NT spores was well tolerated in companion dogs bearing spontaneous solid tumors, with the most common toxicities being the expected symptoms associated with bacterial infections. Objective responses were observed in 6 of 16 dogs (37.5%), with three complete and three partial responses. On the basis of these encouraging results, we treated a human patient who had an advanced leiomyosarcoma with an intratumoral injection of C. novyi-NT spores. This treatment reduced the tumor within and surrounding the bone. Together, these results show that C. novyi-NT can precisely eradicate neoplastic tissues and suggest that further clinical trials of this agent in selected patients are warranted.
Increasing use of fine needle aspiration for oncological diagnosis, while minimally invasive, poses a challenge for molecular testing by traditional sequencing platforms due to high sample requirements. The advent of affordable benchtop next-generation sequencing platforms such as the semiconductor-based Ion Personal Genome Machine (PGM) Sequencer has facilitated multi-gene mutational profiling using only nanograms of DNA. We describe successful next-generation sequencing-based testing of fine needle aspiration cytological specimens in a clinical laboratory setting. We selected 61 tumor specimens, obtained by fine needle aspiration, with known mutational status for clinically relevant genes; of these, 31 specimens yielded sufficient DNA for next-generation sequencing testing. Ten nanograms of DNA from each sample was tested for mutations in the hotspot regions of 46 cancer-related genes using a 318-chip on Ion PGM Sequencer. All tested samples underwent successful targeted sequencing of 46 genes. We showed 100% concordance of results between next-generation sequencing and conventional test platforms for all previously known point mutations that included BRAF, EGFR, KRAS, MET, NRAS, PIK3CA, RET and TP53, deletions of EGFR and wild-type calls. Furthermore, next-generation sequencing detected variants in 19 of the 31 (61%) patient samples that were not detected by traditional platforms, thus increasing the utility of mutation analysis; these variants involved the APC, ATM, CDKN2A, CTNNB1, FGFR2, FLT3, KDR, KIT, KRAS, MLH1, NRAS, PIK3CA, SMAD4, STK11 and TP53 genes. The results of this study show that next-generation sequencing-based mutational profiling can be performed on fine needle aspiration cytological smears and cell blocks. Next-generation sequencing can be performed with only nanograms of DNA and has better sensitivity than traditional sequencing platforms. Use of next-generation sequencing also enhances the power of fine needle aspiration by providing gene mutation results that can direct personalized cancer therapy.
BACKGROUND:The use of cytology specimens for next-generation sequencing (NGS) is particularly challenging because of the unconventional substrate of smears and the often limited sample volume. An analysis of factors affecting NGS testing in cytologic samples may help to increase the frequency of successful testing. METHODS: This study reviewed variables associated with all in-house cytology cases (n 5 207) that were analyzed by NGS with the Ion Torrent platform during a 10-month interval. A statistical analysis was performed to measure the effects of the DNA input threshold, specimen preparation, slide type, tumor fraction, DNA yield, and cytopathologist bias. RESULTS: One hundred sixty-four of 207 cases (79%) were successfully sequenced by NGS; 43 (21%) failed because of either a low DNA yield or a template/library preparation failure. The median estimated tumor fraction and DNA concentration for the successfully sequenced cases were 70% and 2.5 ng/lL, respectively, whereas they were 60% and 0.2 ng/lL, respectively, for NGS failures. Cell block sections were tested in 91 cases, and smears were used in 116 cases. NGS success positively correlated with the DNA yield but not the tumor fraction. Cell block preparations showed a higher success rate than smears. Frosted-tip slides yielded significantly more DNA than fully frosted slides. Lowering the input DNA concentration below the manufacturer's recommended threshold of 10 ng (>0.85 ng/lL) resulted in a marked increase in the NGS success rate from 58.6% to 89.8%. CONCLUSIONS:The failure of NGS with cytology samples is usually a result of suboptimal DNA due to multiple pre-analytical factors.Knowledge of these factors will allow better selection of cytology material for mutational analysis. Cancer (Cancer Cytopathol) 2015;123:659-68.
- Rapid on-site evaluation can ensure that the targeted lesion is being sampled and can enable appropriate specimen triage. If available, it should be used with EBUS-TBNA in the diagnosis of lung cancer because it can minimize repeat procedures for additional desired testing (ie, molecular studies). Some studies have shown that ROSE does not adversely affect the number of aspirations, total procedure time of EBUS-TBNA, or the rate of postprocedure complications; it is also helpful in providing a preliminary diagnosis that can reduce the number of additional invasive procedures, such as mediastinoscopy. As EBUS technology continues to evolve, our knowledge of the role of ROSE in EBUS-TBNA for the diagnosis of lung cancer will also continue to grow and evolve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.