Type 2 diabetes mellitus causes excessive morbidity and premature cardiovascular (CV) mortality. Although tight glycemic control improves microvascular complications, its effects on macrovascular complications are unclear. The recent publication of the EMPA-REG OUTCOME study documenting impressive benefits with empagliflozin (a sodium-glucose cotransporter 2 [SGLT2] inhibitor) on CV and all-cause mortality and hospitalization for heart failure without any effects on classic atherothrombotic events is puzzling. More puzzling is that the curves for heart failure hospitalization, renal outcomes, and CV mortality begin to separate widely within 3 months and are maintained for >3 years. Modest improvements in glycemic, lipid, or blood pressure control unlikely contributed significantly to the beneficial cardiorenal outcomes within 3 months. Other known effects of SGLT2 inhibitors on visceral adiposity, vascular endothelium, natriuresis, and neurohormonal mechanisms are also unlikely major contributors to the CV/renal benefits. We postulate that the cardiorenal benefits of empagliflozin are due to a shift in myocardial and renal fuel metabolism away from fat and glucose oxidation, which are energy inefficient in the setting of the type 2 diabetic heart and kidney, toward an energy-efficient super fuel like ketone bodies, which improve myocardial/renal work efficiency and function. Even small beneficial changes in energetics minute to minute translate into large differences in efficiency, and improved cardiorenal outcomes over weeks to months continue to be sustained. Well-planned physiologic and imaging studies need to be done to characterize fuel energeticsbased mechanisms for the CV/renal benefits.Type 2 diabetes mellitus (T2DM) is a chronic debilitating disease that leads to excessive morbidity and premature cardiovascular (CV) mortality worldwide. Although studies have documented the benefits of optimal glycemic control on microvascular complications, the effect of tight glycemic control on macrovascular complications is unclear (1). In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study, tight glycemic control increased CV and all-cause mortality (2). Glitazones and saxagliptin (a dipeptidyl peptidase 4 inhibitor) increase the risk of hospitalization for heart failure (HF) (3,4). In this context, the recent publication of the EMPA-REG OUTCOME study documenting impressive benefits with empagliflozin (a sodium-glucose cotransporter 2 [SGLT2] inhibitor) on CV/all-cause mortality and hospitalization for HF is a game changer, and if replicated, it may lead to a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.