Cation channels of sperm (CatSper) are sperm-specific calcium channels with identified roles in the regulation of sperm function in humans, mice, and horses. We sought to employ a comparative genomics approach to identify conserved CATSPER genes in the bovine genome, and profile their expression in reproductive tissue. We hypothesized that CATSPER proteins expressed in bull testicular tissue mediates sperm hyperactivation and their rheotactic response in the reproductive tract of the cow. Bioinformatic analysis identified all four known CATSPER genes (CATSPER 1-4) in the bovine genome, and profiling by quantitative real-time polymerase chain reaction identified site-specific variation in messenger ribonucleic acid (mRNA) expression for all four genes along the reproductive tract of the bull. Using a novel antibody against CATSPER 1, protein expression was confirmed and localized to the principal piece of bull sperm, in agreement with what has been reported in other species. Subsequent treatment of bull sperm with either the calcium chelator ethylene glycol tetraacetic acid; mibefradil, a specific blocker of CatSper channels in human sperm; or CATSPER1 antibody all significantly inhibited caffeine-induced hyperactivation and the rheotactic response, supporting the concept that the calcium influx occurs via CatSper channels. Taken together, the work here provides novel insights into expression and function of CatSper channels in bull testicular tissue and in the function of ejaculated sperm.
The mechanism that causes the detachment of spermatozoa from the oviductal reservoir around the time of ovulation remains to be elucidated. Because the cumulus cells of the bovine oocyte are known to secrete progesterone (P4), and P4 has been shown to act upon cation channels of spermatozoa (CatSper) in human spermatozoa, it was hypothesised that P4 could induce hyperactivation due to an influx of extracellular calcium, and this would facilitate detachment of spermatozoa from oviductal epithelial cells. Therefore, this study aimed to investigate the role and mechanism of action of P4 in the release of spermatozoa from bovine oviduct epithelial cells (BOEC). Initial dose–response assessments on sperm hyperactivation determined the optimum concentration of P4 (10 nM), mibefradil (a non-specific Ca2+ channel antagonist; 5µM), NNC 55-0396 dihydrochloride (NNC; a CatSper antagonist; 2µM), mifepristone (a classical and membrane P4 receptor antagonist; 400nM) and AG205 (a membrane P4 receptor antagonist; 10μM). BOEC explants were incubated with frozen–thawed bovine spermatozoa for 30min, following which loosely bound spermatozoa were removed. Two experiments were completed. In Experiment 1, BOECs were treated for 30min with either no treatment, P4, NNC, mibefradil, P4+mibefradil, P4+NNC, P4+mibefradil+NNC or P4+EGTA. In Experiment 2, BOECs were treated for 30min with either no treatment, P4, mifepristone, AG205, mifepristone+AG205, P4+mifepristone, P4+AG205 or P4+mifepristone+AG205. The number of spermatozoa remaining bound per millimetre squared of BOEC explant was determined. Progesterone stimulated the release of bound spermatozoa from BOEC explants, whereas NNC, mibefradil and EGTA inhibited this release. The release of spermatozoa by P4 was inhibited in the presence of both mifepristone and AG205, whereas the combination of both had the greatest inhibitory action on P4 release of spermatozoa. These findings suggest the presence of a P4 membrane receptor on bovine spermatozoa and that P4-induced release of spermatozoa from BOECs is likely mediated by extracellular Ca2+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.