In this large, prospective, multinational cohort, more than one half of all cases of non-HACEK gram-negative bacillus endocarditis were associated with health care contact. Non-HACEK gram-negative bacillus endocarditis is not primarily a disease of injection drug users.
The capacity of the adrenal to produce cortisol is controlled in part by 21-hydroxylase (CYP21) and the production of androgens by 17-hydroxylase/17-20-lyase (CYP17), in response to secretagogues including ACTH, angiotensin-II (A-II) and insulin. In this study we examined the capacity of human adrenocortical cells to produce cortisol and androgens in response to these secretagogues and their ability to regulate the expression of CYP21 and CYP17. In H-295 cells, forskolin and A-II were found to stimulate production of cortisol relative to androstenedione and a similar pattern of steroid production was noted in primary human adrenocortical cells. Both mRNA and protein expression of CYP21 was upregulated with forskolin and A-II alone and in combination, as detected by Northern and Western blotting. Whereas expression of CYP17 mRNA and protein was upregulated in the presence of forskolin and forskolin in combination with insulin. The ability of steroidogenic factor-1 (SF-1) and nur77 to regulate transcription of these enzymes was examined. Forskolin, A-II and insulin increased the protein expression of SF-1. Increased binding of SF-1 to its response element in the presence of forskolin, A-II and insulin was observed. Nur77 was expressed primarily in the zona glomerulosa and fasciculata. Increased protein expression of nur77 and the greatest binding of nur77 to its response element was seen when cells were stimulated with A-II in combination with forskolin. These data indicate that nur77 may preferentially regulate steroid enzyme genes relevant to cortisol production and thereby regulate differential cortisol and adrenal androgen production.
The relationship between hemodynamics and thrombus deposition in abdominal aortic aneurysm is investigated for three patients (A, B and C), each with mature fusiform aneurysms. Our methodology utilises initial and follow-up computerised tomography scans for each patient to identify regions of mural thrombus growth and to provide patient-specific models for hemodynamic analysis using computational fluid dynamics. The intervals between scans for patients A, B and C were 17, 15 and 3 months, respectively. The simulations were performed using physiologically realistic boundary conditions. The hemodynamic features of the flow considered include the velocity field, the shear strain rate field, the time averaged wall shear stress and the oscillatory shear index. The parameter that showed best correlation with the location of thrombus growth was the oscillatory shear index. In particular, in the case of patient C where the interval between scans was the shortest, thrombus growth was observed at regions of low oscillatory shear index (OSI < 0.1).
This work reports on the implementation and validation of a two-system, single-analysis, fluid—structure interaction (FSI) technique that uses the finite volume (FV) method for performing simulations on abdominal aortic aneurysm (AAA) geometries. This FSI technique, which was implemented in OpenFOAM, included fluid and solid mesh motion and incorporated a non-linear material model to represent AAA tissue. Fully implicit coupling was implemented, ensuring that both the fluid and solid domains reached convergence within each time step. The fluid and solid parts of the FSI code were validated independently through comparison with experimental data, before performing a complete FSI simulation on an idealized AAA geometry. Results from the FSI simulation showed that a vortex formed at the proximal end of the aneurysm during systolic acceleration, and moved towards the distal end of the aneurysm during diastole. Wall shear stress (WSS) values were found to peak at both the proximal and distal ends of the aneurysm and remain low along the centre of the aneurysm. The maximum von Mises stress in the aneurysm wall was found to be 408 kPa, and this occurred at the proximal end of the aneurysm, while the maximum displacement of 2.31 mm occurred in the centre of the aneurysm. These results were found to be consistent with results from other FSI studies in the literature.
This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.