The coronavirus disease 2019 (COVID-19) pandemic continues to pose profound challenges to society. Its spread has been mitigated through strategies including social distancing; however, this may result in the adoption of a sedentary lifestyle. This study aimed to investigate: 1) physical activity (PA) levels, sedentary behavior (SB), and sleep in young adults during the COVID-19 epidemic, and 2) the change in these behaviors before and during the pandemic. A total of 631 young adults (38.8% males) aged between 18 and 35 participated in the cross-sectional study and completed a one-off online survey relating to general information, PA, SB, and sleep. For the longitudinal study, PA, SB, and sleep data, obtained from 70 participants before and during the COVID-19 pandemic, were analyzed. Participants engaged in low PA, high SB, and long sleep duration during the COVID-19 pandemic. Moreover, a significant decline in PA while an increase in time spent in both SB and sleep was observed during the COVID-19 outbreak. The results of this study demonstrated a sedentary lifestyle in young adults during the COVID-19 pandemic, which will assist health policymakers and practitioners in the development of population specific health education and behavior interventions during this pandemic and for other future events.
Background Although a single bout of postmeal exercise can lower postprandial glucose (PPG), its optimal timing remains unclear. Objective This study aimed to investigate the effect of exercise timing using an individualized approach on PPG in overweight or obese young men. Methods Twenty men [age: 23.0 ± 4.3 y; BMI (kg/m2): 27.4 ± 2.8] each completed three 240-min trials in a randomized order separated by 6–14 d: 1) sitting (SIT), 2) walking initiated at each participant's PPG-peak time (PPGP) (iP), and 3) walking initiated 20 min before the PPGP (20iP). For each participant, PPGP was predetermined using continuous glucose monitoring. Walking was performed at 50% maximal oxygen consumption for 30 min. Venous blood was collected at 15- and 30-min intervals for 0–120 min and 120–240 min, respectively. The primary outcome was plasma PPG. Generalized estimating equations were used for comparison between trials. Results Compared with SIT, the 4-h incremental AUCs (iAUCs) for plasma PPG (−0.6 mmol · L−1 · h; P = 0.047) and insulin (−28.7%, P < 0.001) were reduced in 20iP only, and C-peptide concentrations were lower after iP (−14.9%, P = 0.001) and 20iP (−28.7%, P < 0.001). Plasma insulin (−11.1%, P = 0.006) and C-peptide (−8.3%, P = 0.012) were lower due to the 20iP compared with iP treatment. Finally, PPG reductions due to iP and 20iP occurred only in men with a BMI > 27.5 kg/m2 (iP, −11.2%; 20iP, −14.7%; P = 0.047) and higher glucose iAUC values during SIT (iP, −25.5%; 20iP, −25.7%; P < 0.001). Conclusions Walking initiated 20 min before PPGP lowered PPG and plasma insulin and C-peptide concentrations in young men with overweight or obesity, in particular in those with high BMI or glucose iAUC values during SIT; it also lowered plasma insulin and C-peptide concentrations more effectively than did exercise initiated at PPGP. This trial was registered at the Chinese Clinical Trial Registry (http://www.chictr.org.cn/index.aspx) as ChiCTR1900023175.
ObjectiveMetabolic syndrome (MetS) or prediabetes is a complex disorder that is defined by a clustering of cardiometabolic risk factors, including obesity, hypertriglyceridemia, reduced high-density lipoprotein (HDL) cholesterol, hypertension, and insulin resistance. Among cardiometabolic risk factors, central obesity plays a key role in the development of MetS through alterations in the secretion of adipokines and interacts with other MetS risk factors to unfavorably influence overall cardiometabolic risk. Obesity has grasped epidemic proportions in Asia, which has the highest number of people with diabetes in the world. But, the importance of central obesity in the clustering of all four MetS risk factors or vice versa in predicting severity of MetS has not yet been investigated in Asian population. Therefore, the present study examined the influence of central obesity on circulating levels of adipokines through its interaction with the clustering of cardiometabolic risk factors of MetS including hyperglycemia, hypertriglyceridemia, dyslipidemia and hypertension in Hong Kong Chinese adults.SubjectsBlood samples from 83 Hong Kong Chinese adults, who were previously screened for MetS according to the guideline of the United States National Cholesterol Education Program Expert Panel Adult Treatment Panel III criteria were selected. Insulin and adipokines, including visfatin, chemerin, plasminogen activator inhibitor-1 (PAI-1), resistin, C-C motif chemokine ligand 2 (CCL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), tumour necrosis factor-α (TNF-α), leptin and adiponectin were assessed.ResultsThe interacting effect of central obesity with all of the other four MetS risk factors increased the proinflammatory status of adipokines (TNF-α, leptin) and decreased the anti-inflammatory status of adipokine (adiponectin).ConclusionOur results indicate that the inflammatory status of MetS may be more severe in the presence of central obesity. Adipokines, as biomarkers for pathophysiological changes, may help to improve early patient identification and to predict MetS-associated morbidity and mortality.
This study evaluated the morphological changes of the lower limb and associated hemodynamic responses to different lower-body compression pressures (COMPs) in physically active, healthy individuals at rest. Each of the 32 participants underwent three trials with three different degrees of lower-body compression applied: “Low” (2.2±1.4 mmHg), “Medium” (12.9±3.9 mmHg), and “High” (28.8±8.3 mmHg). In each COMP, a cross-sectional area of leg muscles (CSAmuscle), subcutaneous fat (CSAfat), superficial vessels (SupV), deep arteries (DA), and deep veins (DV) at the calf, knee, and thigh levels were measured using magnetic resonance imaging (MRI). Additionally, blood pressure (BP), heart rate (HR), cardiac output (CO), stroke volume (SV), and systemic vascular resistance (SVR) were measured using Doppler ultrasound (USCOM®). With High COMP, calf CSAmuscle and SupV were smaller (p<0.01), whereas DA and DV were larger (p<0.05). Calf CSAfat, however, was similar among all COMPs. There were no major changes in CSAmuscle and CSAfat at knee and thigh levels. CO (3.2±0.9 L/min) and SV (51.9±16.4 mL) were higher (p<0.05) only with High COMP, but other hemodynamic variables showed no significant changes across different COMPs. The High COMP at the lower limb induces leg morphological changes and increases associated hemodynamic responses of physically active healthy individuals at rest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.