Terpenoids are major subcomponents in aroma substances which harbor sedative physiological potential. We have demonstrated that various monoterpenoids such as the acyclic linalool enhance GABAergic currents in an allosteric manner in vitro upon overexpression of inhibitory α1β2 GABAA receptors in various expression systems. However, in plants or humans, i.e., following intake via inhalation or ingestion, linalool undergoes metabolic modifications including oxygenation and acetylation, which may affect the modulatory efficacy of the generated linalool derivatives. Here, we analyzed the modulatory potential of linalool derivatives at α1β2γ2 GABAA receptors upon transient overexpression. Following receptor expression control, electrophysiological recordings in a whole cell configuration were used to determine the chloride influx upon co-application of GABA EC10−30 together with the modulatory substance. Our results show that only oxygenated linalool metabolites at carbon 8 positively affect GABAergic currents whereas derivatives hydroxylated or carboxylated at carbon 8 were rather ineffective. Acetylated linalool derivatives resulted in non-significant changes of GABAergic currents. We can conclude that metabolism of linalool reduces its positive allosteric potential at GABAA receptors compared to the significant potentiation effects of the parent molecule linalool itself.
GABAA receptors are ligand-gated anion channels that form pentameric arrangements of various subunits. Positive allosteric modulators of GABAA receptors have been reported as being isolated either from plants or synthesized analogs of known GABAA receptor targeting drugs. Recently, we identified monoterpenes, e.g. myrtenol as a positive allosteric modulator at α1β2 GABAA receptors. Here, along with pharmacophore-based virtual screening studies, we demonstrate that scaffold modifications of myrtenol resulted in the loss of modulatory activity. Two independent approaches, fluorescence-based compound analysis and electrophysiological recordings in whole-cell configurations were used for analysis of transfected cells. C-atoms 1 and 2 of the myrtenol backbone were identified as crucial to preserve positive allosteric potential. A modification at C-atom 2 and lack of the hydroxyl group at C-atom 1 exhibited significantly reduced GABAergic currents at α1β2, α1β2γ, α2β3, α2β3γ and α4β3δ receptors. This effect was independent of the γ2 subunit. A sub-screen with side chain length and volume differences at the C-atom 1 identified two compounds that inhibited GABAergic responses but without receptor subtype specificity. Our combined approach of pharmacophore-based virtual screening and functional readouts reveals that side chain modifications of the bridged six-membered ring structure of myrtenol are crucial for its modulatory potential at GABAA receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.