Visual-span profiles are plots of letter-recognition accuracy as a function of letter position left or right of the midline. Previously, we have shown that contraction of these profiles in peripheral vision can account for slow reading speed in peripheral vision. In this study, we asked two questions: (1) can we modify visual-span profiles through training on letter-recognition, and if so, (2) are these changes accompanied by changes in reading speed? Eighteen normally sighted observers were randomly assigned to one of three groups: training at 10 degrees in the upper visual field, training at 10 degrees in the lower visual field and a no-training control group. We compared observers' characteristics of reading (maximum reading speed and critical print size) and visual-span profiles (peak amplitude and bits of information transmitted) before and after training, and at trained and untrained retinal locations (10 degrees upper and lower visual fields). Reading speeds were measured for six print sizes at each retinal location, using the rapid serial visual presentation paradigm. Visual-span profiles were measured using a trigram letter-recognition task, for a letter size equivalent to 1.4x the critical print size for reading. Training consisted of the repeated measurement of 20 visual-span profiles (over four consecutive days) in either the upper or lower visual field. We also tracked the changes in performance in a sub-group of observers for up to three months following training. We found that the visual-span profiles can be expanded (bits of information transmitted increased by 6 bits) through training with a letter-recognition task, and that there is an accompanying increase (41%) in the maximum reading speed. These improvements transferred, to a large extent, from the trained to an untrained retinal location, and were retained, to a large extent, for at least three months following training. Our results are consistent with the view that the visual span is a bottleneck on reading speed, but a bottleneck that can be increased with practice.
The visual span for reading is the number of letters, arranged horizontally as in text, that can be recognized reliably without moving the eyes. The visual-span hypothesis states that the size of the visual span is an important factor that limits reading speed. From this hypothesis, we predict that changes in reading speed as a function of character size or contrast are determined by corresponding changes in the size of the visual span. We tested this prediction in two experiments in which we measured the size of the visual span and reading speed on groups of five subjects as a function of either character size or character contrast. We used a "trigram method" for characterizing the visual span as a profile of letter-recognition accuracy as a function of distance left and right of the midline (G. E. Legge, J. S. Mansfield, & S. T. L. Chung, 2001). The area under this profile was taken as an operational measure of the size of the visual span. Reading speed was measured with the Rapid Serial Visual Presentation (RSVP) method. We found that the size of the visual span and reading speed showed the same qualitative dependence on character size and contrast, reached maximum values at the same critical points, and exhibited high correlations at the level of individual subjects. Additional analysis of data from four studies provides evidence for an invariant relationship between the size of the visual span and RSVP reading speed; an increase in the visual span by one letter is associated with a 39% increase in reading speed. Our results confirm the visual-span hypothesis and provide a theoretical framework for understanding the impact of stimulus attributes, such as contrast and character size, on reading speed. Evidence for the visual span as a determinant of reading speed implies the existence of a bottom-up, sensory limitation on reading, distinct from attentional, motor, or linguistic influences.
S. T. L. Chung (2002) has shown that rapid serial visual presentation (RSVP) reading speed varies with letter spacing, peaking near the standard letter spacing for text and decreasing for both smaller and larger spacings. In this study, we tested the hypothesis that the dependence of reading speed on letter spacing is mediated by the size of the visual span-the number of letters recognized with high accuracy without moving the eyes. If so, the size of the visual span and reading speed should show a similar dependence on letter spacing. We tested this prediction for RSVP reading and asked whether it generalizes to the reading of blocks of text requiring eye movements. We measured visual-span profiles and reading speeds as a function of letter spacing. Visual-span profiles, measured with trigrams (strings of three random letters), are plots of letter-recognition accuracy as a function of letter position left or right of fixation. Size of the visual span was quantified by a measure of the area under the visual-span profile. Reading performance was measured using two presentation methods: RSVP and flashcard (a short block of text on four lines). We found that the size of the visual span and the reading speeds measured by the two presentation methods showed a qualitatively similar dependence on letter spacing and that they were highly correlated. These results are consistent with the view that the size of the visual span is a primary visual factor that limits reading speed.
Age-related macular degeneration (AMD), affecting the retina, afflicts one out of ten people aged 80 years or older in the United States. AMD often results in vision loss to the central 15-20 deg of the visual field (i.e. central scotoma), and frequently afflicts both eyes. In most cases, when the central scotoma includes the fovea, patients will adopt an eccentric preferred retinal locus (PRL) for fixation. The onset of a central scotoma results in the absence of retinal inputs to corresponding regions of retinotopically mapped visual cortex. Animal studies have shown evidence for reorganization in adult mammals for such cortical areas following experimentally induced central scotomata. However, it is still unknown whether reorganization occurs in primary visual cortex (V1) of AMD patients. Nor is it known whether the adoption of a PRL corresponds to changes to the retinotopic mapping of V1. Two recent advances hold out the promise for addressing these issues and for contributing to the rehabilitation of AMD patients: improved methods for assessing visual function across the fields of AMD patients using the scanning laser ophthalmoscope, and the advent of brain-imaging methods for studying retinotopic mapping in humans. For the most part, specialists in these two areas come from different disciplines and communities, with few opportunities to interact. The purpose of this review is to summarize key findings on both the clinical and neuroscience issues related to questions about visual adaptation in AMD patients.
Enhancing reading ability in peripheral vision is important for the rehabilitation of people with central-visual-field loss from age-related macular degeneration (AMD). Previous research has shown that perceptual learning, based on a trigram letter-recognition task, improved peripheral reading speed among normally-sighted young adults (Chung, Legge & Cheung, 2004). Here we ask whether the same happens in older adults in an age range more typical of the onset of AMD. Eighteen normally-sighted subjects, aged 55 to 76 years, were randomly assigned to training or control groups. Visual-span profiles (plots of letter-recognition accuracy as a function of horizontal letter position) and RSVP reading speeds were measured at 10° above and below fixation during pre- and post-tests for all subjects. Training consisted of repeated measurements of visual-span profiles at 10° below fixation, in 4 daily sessions. The control subjects did not receive any training. Perceptual learning enlarged the visual spans in both trained (lower) and untrained (upper) visual fields. Reading speed improved in the trained field by 60% when the trained print size was used. The training benefits for these older subjects were weaker than the training benefits for young adults found by Chung et al. Despite the weaker training benefits, perceptual learning remains a potential option for low-vision reading rehabilitation among older adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.