SUMMARY The shoot apical meristem (SAM) comprises a group of undifferentiated cells that divide to maintain the meristem and also give rise to all plant shoot organs. SAM fate is specified by HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) transcription factors, which are targets of miR166/165. In Arabidopsis, AGO10 is a critical regulator of SAM maintenance, but the mechanism of regulation remains unknown. Here we demonstrate that AGO10 specifically recruits miR166/165. The AGO10-miR166/165 association is determined by the distinct structure of the miR166/165 duplex. Deficient loading of miR166 into AGO10 results in a defective SAM. AGO10 has a higher binding affinity for miR166 than does AGO1, a master repressor for miRNA targets. Notably, the miR166/165-binding ability of AGO10, but not its catalytic activity, is required for SAM development. We propose that AGO10 functions as a decoy for miR166/165 to maintain the SAM, preventing their incorporation into AGO1 complexes and the subsequent repression of HD-ZIP gene expression.
Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein–encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.
Motivation: The traditional approach to annotate alternative splicing is to investigate every splicing variant of the gene in a case-by-case fashion. This approach, while useful, has some serious shortcomings. Recent studies indicate that alternative splicing is more frequent than previously thought and some genes may produce tens of thousands of different transcripts. A list of alternatively spliced variants for such genes would be difficult to build and hard to analyse. Moreover, such a list does not show the relationships between different transcripts and does not show the overall structure of all transcripts. A better approach would be to represent all splicing variants for a given gene in a way that captures the relationships between different splicing variants. Results: We introduce the notion of the splicing graph that is a natural and convenient representation of all splicing variants. The key difference with the existing approaches is that we abandon the linear (sequence) representation of each transcript and replace it with a graph representation where each transcript corresponds to a path in the graph. We further design an algorithm to assemble EST reads into the splicing graph rather than assembling them into each splicing variant in a case-by-case fashion. Availability: http://www-cse.ucsd.edu/groups/bioinformatics/software.html Contact: sheber@ucsd.edu Keywords: EST assembly; splicing graph; alternative splicing
BackgroundMultiple tick saliva proteins, the majority of which are unknown, confer tick resistance in repeatedly infested animals. The objective of this study was to identify the 24-48 h fed Amblyomma americanum tick saliva immuno-proteome. The 24-48 h tick-feeding phase is critical to tick parasitism as it precedes important events in tick biology, blood meal feeding and disease agent transmission. Fed male, 24 and 96 h fed female phage display cDNA expression libraries were biopanned using rabbit antibodies to 24 and 48 h fed A. americanum female tick saliva proteins. Biopanned immuno-cDNA libraries were subjected to next generation sequencing, de novo assembly, and bioinformatic analysis.ResultsMore than 800 transcripts that code for 24-48 h fed A. americanum immuno-proteins are described. Of the 895 immuno-proteins, 52% (464/895) were provisionally identified based on matches in GenBank. Of these, ~19% (86/464) show high level of identity to other tick hypothetical proteins, and the rest include putative proteases (serine, cysteine, leukotriene A-4 hydrolase, carboxypeptidases, and metalloproteases), protease inhibitors (serine and cysteine protease inhibitors, tick carboxypeptidase inhibitor), and transporters and/or ligand binding proteins (histamine binding/lipocalin, fatty acid binding, calreticulin, hemelipoprotein, IgG binding protein, ferritin, insulin-like growth factor binding proteins, and evasin). Others include enzymes (glutathione transferase, cytochrome oxidase, protein disulfide isomerase), ribosomal proteins, and those of miscellaneous functions (histamine release factor, selenoproteins, tetraspanin, defensin, heat shock proteins).ConclusionsData here demonstrate that A. americanum secretes a complex cocktail of immunogenic tick saliva proteins during the first 24-48 h of feeding. Of significance, previously validated immunogenic tick saliva proteins including AV422 protein, calreticulin, histamine release factor, histamine binding/lipocalins, selenoproteins, and paramyosin were identified in this screen, supporting the specificity of the approach in this study. While descriptive, this study opens opportunities for in-depth tick feeding physiology studies.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-518) contains supplementary material, which is available to authorized users.
Cotton fiber development is a fundamental biological phenomenon, yet the molecular basis of fiber cell initiation is poorly understood. We examined molecular and cellular events of fiber cell development in the naked seed mutant (N1N1) and its isogenic line of cotton (Gossypium hirsutum L. cv. Texas Marker-1, TM-1). The dominant mutation not only delayed the process of fiber cell formation and elongation but also reduced the total number of fiber cells, resulting in sparsely distributed short fibers. Gene expression changes in TM-1 and N1N1 mutant lines among four tissues were analyzed using spotted cotton oligo-gene microarrays. Using the Arabidopsis genes, we selected and designed approximately 1,334 70-mer oligos from a subset of cotton fiber ESTs. Statistical analysis of the microarray data indicates that the number of significantly differentially expressed genes was 856 in the leaves compared to the ovules (3 days post-anthesis, DPA), 632 in the petals relative to the ovules (3 DPA), and 91 in the ovules at 0 DPA compared to 3 DPA, all in TM-1. Moreover, 117 and 30 genes were expressed significantly different in the ovules at three and 0 DPA, respectively, between TM-1 and N1N1. Quantitative RT-PCR analysis of 23 fiber-associated genes in seven tissues including ovules, fiber-bearing ovules, fibers, and non-fiber tissues in TM-1 and N1N1 indicates a mode of temporal regulation of the genes involved in transcriptional and translational regulation, signal transduction, and cell differentiation during early stages of fiber development. Suppression of the fiber-associated genes in the mutant may suggest that the N1N1 mutation disrupts temporal regulation of gene expression, leading to a defective process of fiber cell elongation and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.