Obesity is a health problem affecting more than 40% of US adults and 13% of the global population. Anti-obesity treatments including diet, exercise, surgery and pharmacotherapies have so far failed to reverse obesity incidence. Herein, we target obesity with a pharmacotherapeutic approach that decreases caloric efficiency by mitochondrial uncoupling. We show that a recently identified mitochondrial uncoupler BAM15 is orally bioavailable, increases nutrient oxidation, and decreases body fat mass without altering food intake, lean body mass, body temperature, or biochemical and haematological markers of toxicity. BAM15 decreases hepatic fat, decreases inflammatory lipids, and has strong antioxidant effects. Hyperinsulinemic-euglycemic clamp studies show that BAM15 improves insulin sensitivity in multiple tissue types. Collectively, these data demonstrate that pharmacologic mitochondrial uncoupling with BAM15 has powerful anti-obesity and insulin sensitizing effects without compromising lean mass or affecting food intake.
Small molecule mitochondrial uncouplers are emerging as a new class of molecules for the treatment of nonalcoholic steatohepatitis. We utilized BAM15, a potent protonophore that uncouples the mitochondria without depolarizing the plasma membrane, as a lead compound for structure−activity profiling. Using oxygen consumption rate as an assay for determining uncoupling activity, changes on the 5-and 6-position of the oxadiazolopyrazine core were introduced. Our studies suggest that unsymmetrical aniline derivatives bearing electron withdrawing groups are preferred compared to the symmetrical counterparts. In addition, alkyl substituents are not tolerated, and the N−H proton of the aniline ring is responsible for the protonophore activity. In particular, compound 10b had an EC 50 value of 190 nM in L6 myoblast cells. In an in vivo model of NASH, 10b decreased liver triglyceride levels and showed improvement in fibrosis, inflammation, and plasma ALT. Taken together, our studies indicate that mitochondrial uncouplers have potential for the treatment of NASH.
Small molecule mitochondrial uncouplers have recently garnered great interest for their potential in treating nonalcoholic steatohepatitis (NASH). In this study, we report the structure−activity relationship profiling of a 6-amino[1,2,5]oxadiazolo [3,4-b]pyrazin-5-ol core, which utilizes the hydroxy moiety as the proton transporter across the mitochondrial inner membrane. We demonstrate that a wide array of substituents is tolerated with this novel scaffold that increased cellular metabolic rates in vitro using changes in oxygen consumption rate as a readout. In particular, compound SHS4121705 (12i) displayed an EC 50 of 4.3 μM in L6 myoblast cells and excellent oral bioavailability and liver exposure in mice. In the STAM mouse model of NASH, administration of 12i at 25 mg kg −1 day −1 lowered liver triglyceride levels and improved liver markers such as alanine aminotransferase, NAFLD activity score, and fibrosis. Importantly, no changes in body temperature or food intake were observed. As potential treatment of NASH, mitochondrial uncouplers show promise for future development.
Summary
Pancreatic islets are essential for maintaining physiological blood glucose levels, and declining islet function is a hallmark of type 2 diabetes. We employ mass spectrometry-based proteomics to systematically analyze islets from 9 genetic or diet-induced mouse models representing a broad cross-section of metabolic health. Quantifying the islet proteome to a depth of >11,500 proteins, this study represents the most detailed analysis of mouse islet proteins to date. Our data highlight that the majority of islet proteins are expressed in all strains and diets, but more than half of the proteins vary in expression levels, principally due to genetics. Associating these varied protein expression levels on an individual animal basis with individual phenotypic measures reveals islet mitochondrial function as a major positive indicator of metabolic health regardless of strain. This compendium of strain-specific and dietary changes to mouse islet proteomes represents a comprehensive resource for basic and translational islet cell biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.