Background: Second generation or ‘‘atypical’’ antipsychotics demonstrate an improved therapeutic profile over conventional neuroleptics. These are effective in both positive and negative symptoms of the disease and have a lower propensity to induce adverse symptoms. Objective: Main objective of the research was in silico design and synthesis of potential atypical antipsychotics with combined antiserotonergic / antidopaminergic effect. Method: A one pot synthesis of aryl substituted imidazole derivatives was carried out in green solvent PEG-400 and the prepared compounds were evaluated for atypical antipsychotic activity in animal models for dopaminergic and serotonergic antagonism. The compounds were designed based on their 3D similarity studies to standard drugs and in silico (docking studies) with respect to 5-HT2A and D2 receptors. Results and Discussion: Results from the docking studies with respect to 5-HT2A and D2 receptors suggested a potential atypical antipsychotic profile for the test compounds. Theoretical ADME profiling of the compounds based on selected physicochemical parameters suggested an excellent compliance with Lipinski’s rules. The potential of these compounds to penetrate the blood brain barrier (log BB) was computed through an online software program and the values obtained for the compounds suggested a good potential for brain permeation. Reversal of apomorphine induced mesh climbing behaviour coupled with inactivity in the stereotypy assay indicates antidopaminergic effect and a potential atypical profile for the test compounds 1-5. Further, activity of compounds in DOI assay indicated a 5-HT2 antagonistic profile (5-HT2 antagonism). Conclusion: Compound 5 emerged as important lead compound showing combined antidopaminergic and antiserotonergic (5-HT2A) activity with potential atypical antipsychotic profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.