Two-dimensional NMR methods were used to model the possible solution structure of an intercalative complex of 9-aminoellipticine (Aell), a polycyclic pyridocarbazolamine, covalently bound to an apurinic ring-opened deoxyribose site of a duplex DNA fragment in the reduced Schiff base form. The required oligonucleotide single strand containing covalently attached aminoellipticine was obtained by reductive amination in the presence of sodium cyanoborohydride. The combined NMR-energy minimization methods were employed to refine the model structures of two distinct forms, intrahelical and extrahelical, of a control 9-mer duplex DNA, d(CGTG.dr.GTGC).d(GCACTCACG), which contains an apurinic site positioned opposite a dT residue on the complementary strand. The model structure of an aminoellipticine conjugate with the same DNA sequence, derivatized via the aforementioned covalent attachment, was also obtained by incorporating intermolecular drug-DNA and intra- and internucleotide NOE-derived proton-proton distance estimates as restraints in energy minimization routines. The indole ring system of aminoellipticine, which is inserted at the apurinic site, intercalates between and is parallel to flanking GC base pairs. The pyridinic ring of aminoellipticine, in protonated form, also stacks between cytidine and thymidine bases on the complementary strand, which is consistent with the observation that the normal sequential NOE connectivity at the 5'-C13-T14 step is broken and indeed diverted through the ellipticine moiety, e.g., C13-Aell-T14 connectivities through the Aell-H4/C5Me protons. Interestingly, the partial stacking of the pyridinic ring is observed only between the 5'-CT step vs an adjacent 5'-TC step, owing to inherently weak stacking interactions associated with the former. In the absence of any potential groups that can participate in electrostatic or hydrogen-bonding interactions with the nucleic acid, pi-pi stacking and hydrophobic contacts at the intercalation site appear to be the important factors in determining stability and conformation of the aminoellipticine-DNA conjugate. Stacking interactions in such a bistranded intercalative complexation of aminoellipticine apparently govern the formation of a single intrahelical form of a right-handed B-type DNA duplex. The overall structural features lead us to propose working models for an enzyme-like DNA cleavage activity of 9-aminoellipticine and the observed inhibition of the AP endonuclease-dependent DNA excision-repair pathway.
The binding characteristics of Hoechst 33258 (1), a synthetic bis-benzimidazole, and its structural analog 2, with one of the benzimidazoles replaced by a pyridoimidazole, to the self-complementary decadeoxyribonucleotide sequences d(CGCAATTGCG)2 (A) and d-(CATGGCCATG)2 (B) respectively, were examined using high field 1H-NMR techniques. Selective complexation induced chemical shift changes, the presence of exchange signals and intermolecular NOE contacts between the ligands and the minor groove protons of the oligonucleotides suggest the preferred binding sites as the centrally located AATT segment for complex A1, and the CCAT segment for complex B2. The B-type conformations of the two DNA duplexes are preserved upon complexation, as confirmed by the 2D-NOESY based sequential connectivities involving DNA base and sugar protons. Close intermolecular NOE based contacts between the ligands and their respective DNA sequences were further refined to model the ligand-DNA complexes starting from the computer generated B-type structures for the oligonucleotides. Force field calculations of ligand-DNA interaction energies indicate a more favorable contribution from the van der Waals energy component in the case of complex A1 consistent with its stronger net binding compared with the complex B2. Overall, the incorporation of a pyridinic nitrogen in Hoechst 33258 structure alters its selectivity for base pair recognition from A.T to G.C, resulting largely from the formation of a hydrogen bond between the new basic center and the 2-NH2 group of a guanosine moiety. The rates for the exchange of ligands between the two equivalent binding sites (AATT for 1, and CCAT for 2) of the self-complementary DNA sequences, are estimated from analyses of coalescence of NMR signals to be 189s-1 at 301 K for A1 and 79s-1 at 297 K for B2; which correspond to delta G++ of 13.8 and 18.6 kcal.mol-1 respectively.
To understand the physiological basis of tolerance to combined stresses to low phosphorus (P) and drought in mungbean (Vigna radiata (L.) R. Wilczek), a core set of 100 accessions were evaluated in hydroponics at sufficient (250 μM) and low (3 μM) P, and exposed to drought (dehydration) stress. The principal component analysis and ranking of accessions based on relative values revealed that IC280489, EC397142, IC76415, IC333090, IC507340 and IC121316 performed superior while IC119005, IC73401, IC488526 and IC325853 performed poorly in all treatments. Selected accessions were evaluated in soil under control (sufficient P, irrigated), low P (without P, irrigated), drought (sufficient P, withholding irrigation) and combined stress (low P, withholding irrigation). Under combined stress, a significant reduction in gas exchange traits (photosynthesis, stomatal conductance, transpiration, instantaneous water use efficiency), P uptake in seed and shoot was observed under combined stress as compared to individual stresses. Among accessions, IC488526 was most sensitive while IC333090 and IC507340 exhibited tolerance to individual or combined stress. The water balance and low P adaptation traits like membrane stability index, relative water content, specific leaf weight, organic acid exudation, biomass, grain yield and P uptake can be used as physiological markers to evaluate for agronomic performance. Accessions with considerable resilience to low P and drought stress can be either used as ‘donors’ in Vigna breeding program or cultivated in areas with limited P and water availability or both.
The understanding of early events in the expression of genes has vastly improved in recent years with the identification of a variety of gene- and sequence-specific DNA binding transcription factors. One such protein, Sp1, has been implicated in activating transcription of various cellular and viral genes including those of HIV, and SIV types of retroviruses. The basic recognition site for Sp1 has been identified as variants of a 10 base-pairs long GC-rich DNA, often containing a hexanucleotide segment 5'-GGGCGG (termed GC-box). However, variations in both the relative protein-DNA binding affinity and the nature of binding sequences have been noted. Two-dimensional 1H-NMR experiments (500 MHz) were employed for conformational studies of two decadeoxyribonucleotide duplexes, d(GAGGCGTGGC).d(GCCACGCCTC), termed Sp1-III, and d(GGGAGTGGCG).d(CGCCACTCCC), termed Sp1-I. These are two of the highest affinity Sp1 binding sites and consist of diverse positioning of the tri- and tetranucleotide segments GAG, GTG, GCG, GGCG, GTGG and GGAG, that occur frequently in other Sp1 binding sites as well, and may form specific contacts with the protein. Phase-sensitive nuclear Overhauser enhancement (2D-NOESY and MINSY) and correlation (COSY) spectra were obtained for the assignment of the exchangeable and nonexchangeable protons in a sequence-specific fashion. As a prelude to determination of the detailed solution structures of the selected sequences, numerous structural constraints were obtained from angle-dependent coupling constants and relative intensities of distance-dependent intra- and internucleotide NOEs. Overall, each duplex adopts a structure similar to B-DNA with predominantly C2'-endo/S-type sugar conformation and anti-glycosidic torsion angles. A selective disruption of sequential NOE connectivities at the GAG.CAC and GTG.CAC steps, irrespective of the flanking sequence, suggests that conformational changes at these sites may act as unique determinants of sequence specific recognition/binding of Sp1. Implications for a specific inhibition of Sp1-mediated transcription by minor groove binding class of drugs, designed to recognize GC-rich sequences, are also briefly discussed.
The asymmetrical DNA duplex [5'd(AAGGGACTTTCC)].[5'-d(GGAAAGTCCCTT)] has been studied by one- and two-dimensional NMR techniques. The sequence is comprised of the actual 10 base-pair long binding site for the transcription factor NF-kappa B in the enhancer sequence of the long term repeat (LTR) region of HIV and SIV types of retroviruses associated with the AIDS syndrome. Two additional A.T base-pairs are also included on one end for an added interest in the 12-bp duplex sequence with a pseudo dyad-symmetric disposition of the oligopurine and oligopyrimidine segments, as it appears in the HIV-1 genome. Phase-sensitive two-dimensional spectra (NOESY, ROESY, COSY and TOCSY) were obtained at three different temperatures (5, 15 and 25 degrees C) for a complete assignment of the non-exchangeable protons by tracing through sequence specific intra- and internucleotide connectivities. 2D-NOESY spectra were also acquired in aqueous (90% H2O-D2O) solutions, with two different methods of water signal suppression, to assign the exchangeable protons from specific NOE correlations. Adenine H2 protons were assigned by the use of NOE correlations and from T1 relaxation time measurements. The general spectral features and semi-quantitative interproton distance estimates indicate a B-DNA type conformation. However, some distinctly unusual features associated with the nucleotides at and immediately adjacent to both the 5'-and 3'-ends of AAA/TTT and GGG/CCC segments were noted. The complete assignments, and the observed characteristics, will be of significant value in studying the complexes of this transcriptionally active DNA domain with the protein and other rationally designed DNA binding agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.