A coplanar waveguide fed asymmetric rectangular antenna with sufficient WLAN bandrejection is presented for ultra-wideband applications. The antenna uses an asymmetric rectangular patch, modified feedline, and defected coplanar ground plane for obtaining ultra-wideband performance. An inverted-L shaped slit in the radiating patch is used for realizing the WLAN band-rejection. The antenna is designed on a 1.6 mm thick FR-4 substrate having an area of 12×16 mm 2 (0.169λ L ×0.225λ L). An impedance bandwidth of 11.49 GHz with a WLAN band-notch from 5.15-5.86 GHz is achieved. In addition to this, desirable radiation characteristics in terms of stable radiation patterns, peak realized gain of 4.5 dBi, and maximum total efficiency of 81% are achieved in the pass-band. In the notchedband, the peak gain and total efficiency reduce to −1.3 dB and 40%, respectively. Measured results agree well with simulated results. This antenna structure has fractional bandwidth of 115.18% and a bandwidth dimension ratio of 3029, which is comparable or better than that of similar structures available in the literature. The proposed antenna has desirable time-domain performance in terms of fidelity factor, group delay, isolation, and S 21 phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.