Pure curcumin, an excellent curcuminoid derivative, decreased WT1 gene expression in both transcriptional and translational levels. Thus, pure curcumin is one of a potential chemotherapeutic agent used for treatment of human leukemia. However, its chemotherapeutic property will need to be studied more in future.
Flibanserin (FLB) is a multifunctional serotonergic agent that was recently approved by the FDA for the oral treatment of premenopausal women with hypoactive sexual desire disorder. FLB is a centrally acting drug that has a low oral bioavailability of 33% owing to its exposure to the hepatic first-pass effect, as well as its pH-dependent solubility, which could be an obstacle hindering the drug dissolution and absorption via mucosal barriers. Thus, this work aimed at overcoming the aforementioned drawbacks and promoting the nose-to-brain delivery of FLB via the formulation of an intra-nasal in situ niosomal gel. The Box–Behnken design was employed to study the impact of Span® 85 concentration (X1), hydration time (X2), and pH of the hydrating buffer (X3) on the vesicle size and drug entrapment. The optimized formulation exhibited a spherical shape with a vesicular size of 46.35 nm and entrapment efficiency of 92.48%. The optimized FLB niosomes integrated into gellan gum-based in situ gel exhibited enhanced ex vivo permeation and improved plasma and brain concentrations after nasal administration in rats compared to raw FLB. These findings highlight the capability of the proposed intra-nasal FLB niosomal in situ gel to boost the drug bioavailability and to promote its direct delivery to the brain.
Propolis is a natural substance and consists of bioactive compounds, which gives it antioxidant and antimicrobial properties. However, the use of propolis is limited by the low solubility in aqueous solutions. Thus, nanoparticles may be likely to accomplish enhanced delivery of poorly water-soluble phytomedicine. The aim of the present study was to fabricate and evaluate the biological activity of ethanolic extract of propolis-loaded poly(lactic-co-glycolic acid) nanoparticles (EEP-NPs). The EEP-NPs were prepared using the oil-in-water (o/w) single-emulsion solvent evaporation technique. The physicochemical properties of EEP-NPs were characterized and tested on their cytotoxicity, antifungal activity, and impact on key virulence factors that contribute to pathogenesis of C. albicans. EEP-NPs were successfully synthesized and demonstrated higher antifungal activity than EEP in free form. Moreover, EEP-NPs exhibited less cytotoxicity on Vero cells and suppressed the virulence factors of C. albicans, including adhesion, hyphal germination, biofilm formation, and invasion. Importantly, EEP-NPs exhibited a statistical decrease in the expression of hyphal adhesion-related genes, ALS3 and HWP1, of C. albicans. The results of this study revealed that EEP-NPs mediates a potent anticandidal activity and key virulence factors by reducing the gene-encoding virulence-associated hyphal- adhesion proteins of C. albicans and, thereby, disrupting the morphologic presence and attenuating their virulence.
Curcuma comosa belongs to the Zingiberaceae family. In this study, two natural compounds were isolated from C. comosa, and their structures were determined using nuclear magnetic resonance. The isolated compounds were identified as 7-(3,4-dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene (1) and trans-1,7-diphenyl-5-hydroxy-1-heptene (2). Compound 1 showed the strongest cytotoxicity effect against HL-60 cells, while its antioxidant and anti-inflammatory properties were stronger than those of compound 2. Compound 1 proved to be a potent antioxidant, compared to ascorbic acid. Neither compounds had any effect on red blood cell haemolysis. Furthermore, compound 1 significantly decreased Wilms’ tumour 1 protein expression and cell proliferation in KG-1a cells. Compound 1 decreased the WT1 protein levels in a time- and dose- dependent manner. Compound 1 suppressed cell cycle at the S phase. In conclusion, compound 1 has a promising chemotherapeutic potential against leukaemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.