Due to the rapid growth of mobile broadband and IoT applications, the early-stage mobile traffic classification becomes more important for traffic engineering to guarantee Quality of Service (QoS), implement resource management, and network security. Therefore, identifying traffic flows based on a few packets during the early state has attracted attention in both academic and industrial fields. However, a powerful and flexible platform to handle millions of traffic flows is still challenging. This study aims to demonstrate how to integrate various state-of-the-art machine learning (ML) algorithms, big data analytics platforms, software-defined networking (SDN), and network functions virtualization (NFV) to build a comprehensive framework for developing future 5G SON applications. This platform successfully collected, stored, analyzed, and identified a huge number of real-time traffic flows at broadband Mobile Lab (BML), National Chiao Tung University (NCTU). Moreover, we also implemented network QoS control to configure priorities per-flow traffic to enable bandwidth guarantees for each application by using SDN. Finally, the performance of the proposed models was evaluated by applying them to a real testbed environment. The powerful computing capacity of the platform was also analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.