The vibration signal of heavy gearbox has the nonlinear and nonstationary characteristic, which makes the gear fault diagnosis difficult. Moreover, the useful fault information is mainly focused on the high-frequency components of the raw signal, which also affects the fault feature extraction from vibration signal. For this reason, a novel signal processing method based on variational mode decomposition (VMD) and detrended fluctuation analysis (DFA) is proposed to diagnose the gear faults of heavy gearbox. Since high-frequency component contains more fault information, the raw vibration signal is decomposed several mode components by VMD, which can remove the low-frequency component to retain the high-frequency component. Moreover, the most sensitive mode component is selected in these high-frequency components by a maximal indicator, which is composed of kurtosis and correlation coefficient. The most sensitive mode component is calculated by DFA to obtain bi-logarithmic map, and the sliding windowing algorithm is employed to capture turning point of the bi-logarithmic map, thus extracting the fault feature of small time scale to identify gear faults. The effectiveness of the proposed method for fault diagnosis is validated by experimental data analysis, and the comparison results demonstrate that the recognition rate of gear faults condition have marked improvement by proposed method than the DFA of small time scale (STS-DFA) and EMD-DFA.
The vibration signal of heavy gearbox presents non-stationary and nonlinear characteristics, which increases the difficulty to extract the fault feature. When the gear has a subtle fault, it may cause a perceptible change of local fluctuation rather than the large scale fluctuation. Therefore, the feature parameters extracted from local fluctuation can effectively improve the recognition performance of the gear fault. In this paper, a novel signal processing method based on variational mode decomposition (VMD) and detrended fluctuation analysis (DFA) is proposed to identify the gear fault of heavy gearbox. Firstly, the raw vibration signal is decomposed several mode components by VMD, which is an adaptive and non-recursive signal decomposition method. Next, the sensitive mode component is selected by a maximal indicator, which is composed of kurtosis and correlation coefficient of relative higher frequency mode components corresponding to local fluctuation of raw vibration signal. Finally, the characteristics of the double-scales feature parameters of selected sensitive mode are extracted by DFA. In addition, the position of turning point of double scales is estimated by sliding windowing algorithm. The proposed method is evaluated through its application to gear fault classification using vibration signal. The results demonstrates that the recognization rate of gear faults condition have marked improvement by proposed method than the DFA of Small Time Scale (STS-DFA) method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.