Autosomal dominant optic atrophy is one of the most common inherited optic neuropathies. This disease is genetically heterogeneous, but most cases are due to pathogenic variants in the OPA1 gene: depending on the population studied, 32–90% of cases harbor pathogenic variants in this gene. The aim of this study was to provide a comprehensive overview of the entire spectrum of likely pathogenic variants in the OPA1 gene in a large cohort of patients. Over a period of 20 years, 755 unrelated probands with a diagnosis of bilateral optic atrophy were referred to our laboratory for molecular genetic investigation. Genetic testing of the OPA1 gene was initially performed by a combined analysis using either single-strand conformation polymorphism or denaturing high performance liquid chromatography followed by Sanger sequencing to validate aberrant bands or melting profiles. The presence of copy number variations was assessed using multiplex ligation-dependent probe amplification. Since 2012, genetic testing was based on next-generation sequencing platforms. Genetic screening of the OPA1 gene revealed putatively pathogenic variants in 278 unrelated probands which represent 36.8% of the entire cohort. A total of 156 unique variants were identified, 78% of which can be considered null alleles. Variant c.2708_2711del/p.(V903Gfs*3) was found to constitute 14% of all disease-causing alleles. Special emphasis was placed on the validation of splice variants either by analyzing cDNA derived from patients´ blood samples or by heterologous splice assays using minigenes. Splicing analysis revealed different aberrant splicing events, including exon skipping, activation of exonic or intronic cryptic splice sites, and the inclusion of pseudoexons. Forty-eight variants that we identified were novel. Nine of them were classified as pathogenic, 34 as likely pathogenic and five as variant of uncertain significance. Our study adds a significant number of novel variants to the mutation spectrum of the OPA1 gene and will thereby facilitate genetic diagnostics of patients with suspected dominant optic atrophy.
BackgroundLeber’s hereditary optic neuropathy (LHON) has been considered a prototypical mitochondriopathy and a textbook example for maternal inheritance linked to certain disease-causing variants in the mitochondrial genome. Recently, an autosomal recessive form of LHON (arLHON) has been described, caused by disease-causing variants in the nuclear encoded gene DNAJC30.Methods and resultsIn this study, we screened the DNAJC30 gene in a large Central European cohort of patients with a clinical diagnosis of LHON or other autosomal inherited optic atrophies (OA). We identified likely pathogenic variants in 35/1202 patients, corresponding to a detection rate of 2.9%. The previously described missense variant c.152A>G;p.(Tyr51Cys) accounts for 90% of disease-associated alleles in our cohort and we confirmed a strong founder effect. Furthermore, we identified two novel pathogenic variants in DNAJC30: the nonsense variant c.610G>T;p.(Glu204*) and the in-frame deletion c.230_232del;p.(His77del). Clinical investigation of the patients with arLHON revealed a younger age of onset, a more frequent bilateral onset and an increased clinically relevant recovery compared with LHON associated with disease-causing variants in the mitochondrial DNA.ConclusionThis study expands previous findings on arLHON and emphasises the importance of DNAJC30 in the genetic diagnostics of LHON and OA in European patients.
Genetic heterogeneity leading to retinal disorders impairs biological processes by causing, for example, severe disorder of signal transduction in photoreceptor outer segments. A normal balance of the second messenger homeostasis in photoreceptor cells seems to be a crucial factor for healthy and normal photoreceptor function. Genes like GUCY2D coding for guanylate cyclase GC-E and GUCA1A coding for the Ca2+-sensor guanylate cyclase-activating protein GCAP1 are critical for a precisely controlled synthesis of the second messenger cGMP. Mutations in GUCA1A frequently correlate in patients with cone dystrophy and cone-rod dystrophy. Here, we report two mutations in the GUCA1A gene that were found in patients diagnosed with retinitis pigmentosa, a phenotype that was rarely detected among previous cases of GUCA1A related retinopathies. One patient was heterozygous for the missense variant c.55C > T (p.H19Y), while the other patient was heterozygous for the missense variant c.479T > G (p.V160G). Using heterologous expression and cell culture systems, we examined the functional and molecular consequences of these point mutations. Both variants showed a dysregulation of guanylate cyclase activity, either a profound shift in Ca2+-sensitivity (H19Y) or a nearly complete loss of activating potency (V160G). Functional heterogeneity became also apparent in Ca2+/Mg2+-binding properties and protein conformational dynamics. A faster progression of retinal dystrophy in the patient carrying the V160G mutation seems to correlate with the more severe impairment of this variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.