Spatial and temporal patterns in the onset, offset, and length of the snow season across Northern Hemisphere continents are examined for the period from 1967 to 2008. Full snow seasons (FSS) and core snow seasons (CSS) are defined based on the consistency of snow cover within a location over the course of the cold season. Climatologically, the seasonal onsets of FSS and CSS progress more rapidly across the continents than the slower spring northward offset. Average Northern Hemisphere FSS duration has decreased at a rate of 0.8 week decade−1 (5.3 days decade−1) between the winters of 1972/73 and 2007/08, while there is no significant hemispheric change in CSS duration. Changes in the FSS duration are attributed primarily to a progressively earlier offset, which has advanced poleward at a rate of 5.5 days decade−1. A major change in the trends of FSS offset and duration occurred in the late 1980s. Earlier FSS offsets, ranging from 5 to 25 days, and resultant abbreviated durations are observed in western Europe, central and East Asia, and the mountainous western United States. Where regional changes in CSS were observed, most commonly there were shifts in both onset and offset dates toward earlier dates. Results indicate that it is important to pay close attention to spring snowmelt as an indicator of hemispheric climate variability and change.
To better understand the effects of local topography and climate on soil respiration, we conducted field measurements and soil incubation experiments to investigate various factors influencing spatial and temporal variations in soil respiration for six mixed‐hardwood forest slopes in the midst of the Korean Peninsula. Soil respiration and soil water content (SWC) were significantly greater (P=0.09 and 0.003, respectively) on north‐facing slopes compared to south‐facing slopes, while soil temperature was not significantly different between slopes (P>0.5). At all sites, soil temperature was the primary factor driving temporal variations in soil respiration (r2=0.84–0.96) followed by SWC, which accounted for 30% of soil respiration spatial and temporal variability. Results from both field measurements and incubation experiments indicate that variations in soil respiration due to aspect can be explained by a convex‐shaped function relating SWC to normalized soil respiration rates. Annual soil respiration estimates (1070–1246 g C m−2 yr−1) were not closely related to mean annual air temperatures among sites from different climate regimes. When soils from each site were incubated at similar temperatures in a laboratory, respiration rates for mineral soils from wetter and cooler sites were significantly higher than those for the drier and warmer sites (n=4, P<0.01). Our results indicate that the application of standard temperature‐based Q10 models to estimate soil respiration rates for larger geographic areas covering different aspects or climatic regimes are not adequate unless other factors, such as SWC and total soil nitrogen, are considered in addition to soil temperature.
We report 8 newly established gastric-carcinoma cell lines (SNU-216, 484, 520, 601, 620, 638, 668, 719) from Korean patients. Morphologic study was carried out using light and electron microscopes. CEA, aFP, and CA 19-9 and TPA in supernatant and in cell lysate were measured by radioimmunoassay. p53 and c-Ki-ras gene mutations were screened and confirmed by sequencing. The cell lines, derived from tumors with moderate differentiation, grew as a diffuse monolayer, and those from tumors with poor differentiation and minimal desmoplasia grew exclusively as non-adherent. Out of the 8 gastric-cancer cell lines, 5 had detectable levels of CEA both in supernatant and in cell lysate; there was no expression or secretion of aFP in these cells; 4 cell lines showed high levels of CA 19-9 in cell pellets. All cell lines except SNU-484 had high concentrations of TPA both in cell lysate and in supernatants. p53 mutation was found in 6 cell lines (75%): 2 (SNU-216 and SNU-668) had mutations in exon 6, and other 3 in exon 8. The c-Ki-ras mutation was found in 2 cell lines (25%), SNU-601 and SNU-668. The former showed GGT-to-GAT transition mutation at codon 12, while the latter showed CAA-to-AAA transversion mutation at codon 61. DNA profiles using restriction endonuclease HinfI and polymorphic DNA probes ChdTC-15 and ChdTC-114 showed different unique patterns; which suggests that these cell lines are unique and not cross-contaminated. We believe that the newly characterized gastric-cancer cell lines presented in this paper will provide a useful in vitro model for studies related to human gastric cancer. Int. J. Cancer, 70:0-0, 1997.r 1997 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.