Quality and representative precipitation data play an essential role in hydro-meteorological analyses. However, the required reliability and coverage is often unavailable from conventional gauge observations. As a result, globally available precipitation datasets are being used as an alternative or supplementary to gauge observations. In this study, the accuracy of three recently released, high-resolution precipitation datasets with a spatial resolution of 0.1° and a daily temporal resolution is evaluated over the Upper Blue Nile River Basin (UBNRB) for the period of 2007 to 2016. The datasets are Integrated Multi-satellitE Retrievals for GPM version 6 (IMERG6), Multi-Source Weighted-Ensemble Precipitation version 2.2 (MSWEP2.2) and soil moisture to rain using Advanced SCATterometer version 1.1 (SM2RAIN-ASCAT1.1). The comparison was made between rain gauge observations and two other high-resolution precipitation datasets named Enhancing National Climate Services (ENACTS) and Climate Hazards Group Infrared Precipitation with Stations version 2 (CHIRPS2). The modified Kling-Gupta efficiency (KGE’) and four categorical indices named probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), and frequency bias (fBIAS) was used to measure the skills of each dataset. Results revealed that, except SM2RAIN-ASCAT1.1, all other datasets show a better ability on a monthly time scale for areas with an elevation below 1500 m above sea level (m.a.s.l). The overall performance was better in the wetter months of March to August than the drier months of September to February. Besides, all products including SM2RAIN-ASCAT1.1 could detect no rain events (rain < 1 mm) correctly, but their skill deteriorates on identifying higher intensity events. By comparison, ENACTS (calibrated with most quality gauges of Ethiopia) and CHIRPS2 exhibited the best performance due to their high-resolution nature and inclusion of physiographic information in their data generation procedures. IMERG6 and MSWEP2.2 showed the next best performance according to both the continuous and categorical indices used. SM2RAIN-ASCAT1.1 demonstrates the least skill everywhere due to problems that could be associated with misinterpretations of soil moisture signals by the SM2RAIN algorithm. Considering the scarcity of gauged datasets over UBNRB, IMERG6 and MSWEP2.2 could be regarded as valuable datasets for hydro-climatic analysis, mainly where gauge density is low. SM2RAIN-ASCAT1.1, on the other hand, needs significant bias correction to treat its apparent wet biases before any application.
Understanding the spatial and temporal distributions and variations of basin water budget components is essential for effective water resources management. Due to a lack of basic hydro-meteorological information, the Upper Blue Nile River Basin (UBNRB) remains poorly understood in quantifying its hydrologic fluxes and associated dynamics. This study used a physically based distributed hydrologic model, WEP. We used multi-year land use information to better estimate the water budget components (evapotranspiration, runoff and storage) of the UBNRB. WEP simulation was validated at two main sections of the Upper Blue Nile river monthly from 1992 to 2014 (23 years). Results show that the basin stores a significant amount of water during the long rainy season (June to September) due to higher precipitation and limited evapotranspiration. However, it loses this storage through evapotranspiration during the dry season (October to February). The overall basin precipitation is 1,051 mm per year. Evapotranspiration accounts for 58% of the annual water budget, runoff is 25% and storage is 18%. The findings reported in this study can shed some light on understanding the UBNRB water budget dynamics and inform water management practitioners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.