Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to elicit potent immunity to a broad range of bacteria, mainly via the rapid production of inflammatory cytokines. Whether MAIT cells contribute to antiviral immunity is less clear. Here we asked whether MAIT cells produce cytokines/chemokines during severe human influenza virus infection. Our analysis in patients hospitalized with avian H7N9 influenza pneumonia showed that individuals who recovered had higher numbers of CD161 ) showed robust up-regulation of IFNγ for both cell populations and granzyme B in MAIT cells, although the individual responses varied among healthy donors. However, in contrast to the requirement for cell-associated factors to promote NK cell activation, the induction of MAIT cell cytokine production was dependent on IL-18 (but not IL-12) production by IAV-exposed CD14 + monocytes. Overall, this evidence for IAV activation via an indirect, IL-18-dependent mechanism indicates that MAIT cells are protective in influenza, and also possibly in any human disease process in which inflammation and IL-18 production occur.MAIT cells | influenza virus | H7N9 | IL-18 | monocytes
A better understanding of immunity to influenza virus is needed to generate cross-protective vaccines. Engagement of Ab-dependent cellular cytotoxicity (ADCC) Abs by NK cells leads to killing of virus-infected cells and secretion of antiviral cytokines and chemokines. ADCC Abs may target more conserved influenza virus Ags compared with neutralizing Abs. There has been minimal interest in influenza-specific ADCC in recent decades. In this study, we developed novel assays to assess the specificity and function of influenza-specific ADCC Abs. We found that healthy influenza-seropositive young adults without detectable neutralizing Abs to the hemagglutinin of the 1968 H3N2 influenza strain (A/Aichi/2/1968) almost always had ADCC Abs that triggered NK cell activation and in vitro elimination of influenza-infected human blood and respiratory epithelial cells. Furthermore, we detected ADCC in the absence of neutralization to both the recent H1N1 pandemic strain (A/California/04/2009) as well as the avian H5N1 influenza hemagglutinin (A/Anhui/01/2005). We conclude that there is a remarkable degree of cross-reactivity of influenza-specific ADCC Abs in seropositive humans. Targeting cross-reactive influenza-specific ADCC epitopes by vaccination could lead to improved influenza vaccines.
Furthermore, we found that influenza virus-specific ADCC was present in bronchoalveolar lavage fluid and was able to activate lung NK cells. We concluded that infection with a seasonal influenza virus can induce antibodies that mediate ADCC capable of recognizing divergent influenza virus strains. Cross-reactive ADCC may provide a mechanism for reducing the severity of divergent influenza virus infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.