As an advanced function of the human brain, emotion has a significant influence on human studies, works, and other aspects of life. Artificial Intelligence has played an important role in recognizing human emotion correctly. EEG-based emotion recognition (ER), one application of Brain Computer Interface (BCI), is becoming more popular in recent years. However, due to the ambiguity of human emotions and the complexity of EEG signals, the EEG-ER system which can recognize emotions with high accuracy is not easy to achieve. Based on the time scale, this paper chooses the recurrent neural network as the breakthrough point of the screening model. According to the rhythmic characteristics and temporal memory characteristics of EEG, this research proposes a Rhythmic Time EEG Emotion Recognition Model (RT-ERM) based on the valence and arousal of Long–Short-Term Memory Network (LSTM). By applying this model, the classification results of different rhythms and time scales are different. The optimal rhythm and time scale of the RT-ERM model are obtained through the results of the classification accuracy of different rhythms and different time scales. Then, the classification of emotional EEG is carried out by the best time scales corresponding to different rhythms. Finally, by comparing with other existing emotional EEG classification methods, it is found that the rhythm and time scale of the model can contribute to the accuracy of RT-ERM.
With the popularity of online opinion expressing, automatic sentiment analysis of images has gained considerable attention. Most methods focus on effectively extracting the sentimental features of images, such as enhancing local features through saliency detection or instance segmentation tools. However, as a high-level abstraction, the sentiment is difficult to accurately capture with the visual element because of the “affective gap”. Previous works have overlooked the contribution of the interaction among objects to the image sentiment. We aim to utilize interactive characteristics of objects in the sentimental space, inspired by human sentimental principles that each object contributes to the sentiment. To achieve this goal, we propose a framework to leverage the sentimental interaction characteristic based on a Graph Convolutional Network (GCN). We first utilize an off-the-shelf tool to recognize objects and build a graph over them. Visual features represent nodes, and the emotional distances between objects act as edges. Then, we employ GCNs to obtain the interaction features among objects, which are fused with the CNN output of the whole image to predict the final results. Experimental results show that our method exceeds the state-of-the-art algorithm. Demonstrating that the rational use of interaction features can improve performance for sentiment analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.