This study is Part 1 of two studies which investigate the use of various flexible surface sensors as an alternative to the gold standard Ag/AgCl surface electromyography (sEMG) electrodes in identifying movement intention from a user during common hand gestures. Three conductive textiles, two commercial conductive elastomers and one E-skin elastomer produced on site were tested as biopotential electrodes to establish the efficacy of each in gathering movement intention from the human brain at the level of the muscle. Testing was performed in vivo on two participants across three hand gestures, with results demonstrating that sEMG electrodes made from a commercially sourced conductive fabric can outperform the traditional Ag/AgCl sEMG electrodes, obtaining substantially larger peak and RMS measurements. Given the disadvantages of Ag/AgCl electrodes over long usage periods, namely their tendency to dry out and significant skin preparation, resulting in variable impedances and skin irritation respectively, the incorporation of flexible surface EMG electrodes in hand prosthetic control systems would increase functionality of the prosthetic devices, consequently increasing the quality of life of prosthetic hand users. Disciplines Disciplines Engineering | Science and Technology Studies Publication Details Publication Details O'Brien, S., Searle, T. & Alici, G. (2019). Flexible surface electrodes targeting biopotential signals from forearm muscles for control of prosthetic hands: Part 1-Characterisation of semg electrodes. IEEE/ ASME International Conference on Advanced Intelligent Mechatronics, AIM (pp. 1019-1024). United States: IEEE.
Gursel, "Flexible surface electrodes targeting biopotential signals from forearm muscles for control of prosthetic hands: Part 2 -Characterization of substrates for strain sensors" (2019). Faculty of Engineering and Information Sciences -Papers: Part B. 3393. Abstract AbstractThis study investigates the use of stretchable strain sensors as an alternative to the gold standard Ag/ AgCl surface electromyography (sEMG) electrodes currently utilised to identify movement intention from a user during common hand gestures. Further building on the research in the companion paper, this study documents a series of strain characterisation experiments undertaken on three conductive textiles, two commercial conductive elastomers and one E-skin elastomer produced on site to determine the linearity of each sensor, along with the magnitude of hysteresis in a single stretch and release cycle, and any creep effects present. Gesture identification testing was performed in vivo on two participants, with the three most effective materials across five hand gestures, to assess the functionality of the materials as biopotential electrodes. For this series of experiments, the electrodes were positioned over the site of greatest strain for each gesture. Using a threshold-crossing paradigm, results demonstrated that a commercially sourced conductive fabric can identify 85% of hand gestures performed. The incorporation of flexible strain sensors in hand prosthetic control systems may further increase functionality of such devices, consequently boosting the quality of life of amputees. Disciplines DisciplinesEngineering | Science and Technology Studies Publication Details Publication Details O'Brien, S., Searle, T. & Alici, G. (2019). Flexible surface electrodes targeting biopotential signals from forearm muscles for control of prosthetic hands: Part 2 -Characterization of substrates for strain sensors.Abstract-This study investigates the use of stretchable strain sensors as an alternative to the gold standard Ag/AgCl surface electromyography (sEMG) electrodes currently utilised to identify movement intention from a user during common hand gestures. Further building on the research in the companion paper, this study documents a series of strain characterisation experiments undertaken on three conductive textiles, two commercial conductive elastomers and one E-skin elastomer produced on site to determine the linearity of each sensor, along with the magnitude of hysteresis in a single stretch and release cycle, and any creep effects present. Gesture identification testing was performed in vivo on two participants, with the three most effective materials across five hand gestures, to assess the functionality of the materials as biopotential electrodes. For this series of experiments, the electrodes were positioned over the site of greatest strain for each gesture. Using a threshold-crossing paradigm, results demonstrated that a commercially sourced conductive fabric can identify 85% of hand gestures performed. The incorporation of flexible strai...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.