Zinc-air batteries are a promising technology for large-scale electricity storage. However, their practical deployment has been hindered by some issues related to corrosion and passivation of the zinc anode in an alkaline electrolyte. In this work, anionic surfactant sodium dodecyl sulfate (SDS) and nonionic surfactant Pluronic F-127 (P127) are examined their applicability to enhance the battery performances. Pristine zinc granules in 7 M KOH, pristine zinc granules in 0–8 mM SDS/7 M KOH, pristine zinc granules in 0–1000 ppm P127/7 M KOH, and SDS coated zinc granules in 7 M KOH were examined. Cyclic voltammograms, potentiodynamic polarization, and electrochemical impedance spectroscopy confirmed that using 0.2 mM SDS or 100 ppm P127 effectively suppressed the anode corrosion and passivation. Nevertheless, direct coating SDS on the zinc anode showed adverse effects because the thick layer of SDS coating acted as a passivating film and blocked the removal of the anode oxidation product from the zinc surface. Furthermore, the performances of the zinc-air flow batteries were studied. Galvanostatic discharge results indicated that the improvement of discharge capacity and energy density could be sought by the introduction of the surfactants to the KOH electrolyte. The enhancement of specific discharge capacity for 30% and 24% was observed in the electrolyte containing 100 ppm P127 and 0.2 mM SDS, respectively.
Zinc-air flow batteries exhibit high energy density and offer several appealing advantages. However, their low efficiency of zinc utilization resulted from passivation and corrosion of the zinc anodes has limited their broad application. In this work, ethanol, which is considered as an environmentally friendly solvent, is examined as an electrolyte additive to potassium hydroxide (KOH) aqueous electrolyte to improve electrochemical performance of the batteries. Besides, the effects of adding different percentages of ethanol (0–50% v/v) to 8 M KOH aqueous electrolyte were investigated and discussed. Cyclic voltammograms revealed that the presence of 5–10% v/v ethanol is attributed to the enhancement of zinc dissolution and the hindrance of zinc anode passivation. Also, potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that adding 5–10% v/v ethanol could effectively suppress the formation of passivating layers on the active surface of the zinc anodes. Though the addition of ethanol increased solution resistance and hence slightly decreased the discharge potential of the batteries, a significant enhancement of discharge capacity and energy density could be sought. Also, galvanostatic discharge results indicated that the battery using 10% v/v ethanol electrolyte exhibited the highest electrochemical performance with 30% increase in discharge capacity and 16% increase in specific energy over that of KOH electrolyte without ethanol.
An electrochemical nanoflowers manganese oxide (MnO2) catalyst has gained much interest due to its high stability and high specific surface area. However, there are a lack of insightful studies of electrocatalyst performance in nanoflower MnO2. This study assesses the electrocatalytic performances of nanoflower structure MnO2 for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a zinc–air battery as a bifunctional electrocatalyst. The prepared catalyst was characterized in term of morphology, crystallinity, and total surface area. Cyclic voltammetry and linear sweep voltammetry were used to evaluate the electrochemical behaviors of the as-prepared nanoflower-like MnO2. The discharge performance test for zinc–air battery with a MnO2 catalyst was also conducted. The results show that the MnO2 prepared at dwell times of 2, 4 and 6 h were nanoflowers, nanoflower mixed with nanowires, and nanowires with corresponding specific surface areas of 52.4, 34.9 and 32.4 g/cm2, respectively. The nanoflower-like MnO2 catalyst exhibits a better electrocatalytic performance towards both ORR and OER compared to the nanowires. The number of electrons transferred for the MnO2 with nanoflower, nanoflower mixed with nanowires, and nanowire structures is 3.68, 3.31 and 3.00, respectively. The as-prepared MnO2 nanoflower-like structure exhibits the best discharge performance of 31% higher than the nanowires and reaches up to 30% of the theoretical discharge capacity of the zinc–air battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.