Binocular disparity results in a tangible subjective experience of three-dimensional world, but whether disparity also augments objective perceptual performance remains debated. We hypothesized that the improved coding of depth enabled by binocular disparity allows participants to individuate more objects at a glance as the objects can be more efficiently differentiated from each other and the background. We asked participants to enumerate objects in briefly presented naturalistic (Experiment 1) and artificial (Experiment 2) scenes in immersive virtual reality. This type of enumeration task yields well-documented capacity limits where up to 3–4 items can be enumerated rapidly and accurately, known as subitizing. Our results show that although binocular disparity did not yield a large general improvement in enumeration accuracy or reaction times, it improved participants’ ability to process the items right after the limit of perceptual capacity. Binocular disparity also sped-up response times by 27 ms on average when artificial stimuli (cubes) were used. Interestingly, the influence of disparity on subjectively experienced depth revealed a clearly different pattern than the influence of disparity on objective performance. This suggests that the functional and subjective sides of stereopsis can be dissociated. Altogether our results suggest that binocular disparity may increase the number of items the visual system can simultaneously process. This may help animals to better resolve and track objects in complex, cluttered visual environments.
Binocular disparity results in a tangible subjective experience of three-dimensional world, but whether disparity also augments objective perceptual performance remains debated. We hypothesized that the improved coding of depth enabled by binocular disparity allows participants to individuate more object at a glance as the objects can be more efficiently differentiated from each other and the background. We asked participants to enumerate objects in briefly presented naturalistic (Experiment 1) and artificial (Experiment 2) scenes in immersive virtual reality. This type of enumeration task yields well-documented capacity limits where up to 3-4 items can be enumerated rapidly and accurately, known as subitizing. Our results show that although binocular disparity did not yield a large general improvement in enumeration accuracy or reaction times, it improved participants’ ability to process the items right after the limit of perceptual capacity. Binocular disparity also sped-up response times by 27 ms on average when artificial stimuli (cubes) were used. Interestingly, the influence of disparity on subjectively experienced depth revealed a clearly different pattern than the influence of disparity on objective performance. This suggests that the functional and subjective sides of stereopsis can be dissociated. Altogether our results suggest that binocular disparity may increase the number of items the visual system can simultaneously process. This may help animals to better resolve and track objects in complex, cluttered visual environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.