Wireless fingerprinting localization (FL) systems identify locations by building radio fingerprint maps, aiming to provide satisfactory location solutions for the complex environment. However, the radio map is easy to change, and the cost of building a new one is high. One research focus is to transfer knowledge from the old radio maps to a new one. Feature-based transfer learning methods help by mapping the source fingerprint and the target fingerprint to a common hidden domain, then minimize the maximum mean difference (MMD) distance between the empirical distributions in the latent domain. In this paper, the optimal transport (OT)-based transfer learning is adopted to directly map the fingerprint from the source domain to the target domain by minimizing the Wasserstein distance so that the data distribution of the two domains can be better matched and the positioning performance in the target domain is improved. Two channel-models are used to simulate the transfer scenarios, and the public measured data test further verifies that the transfer learning based on OT has better accuracy and performance when the radio map changes in FL, indicating the importance of the method in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.