With the widespread use of Internet of Things and cloud computing in smart cities, various security and privacy challenges may be encountered.The most basic problem is authentication between each application, such as participating users, IoT devices, distributed servers, authentication centers, etc. In 2020, Kang et al. improved an authentication protocol for IoT-Enabled devices in a distributed cloud computing environment and its main purpose was in order to prevent counterfeiting attacks in Amin et al.’ protocol, which was published in 2018. However, We found that the Kang et al.’s protocol still has a fatal vulnerability, that is, it is attacked by offline password guessing, and malicious users can easily obtain the master key of the control server. In this article, we extend their work to design a lightweight pseudonym identity based authentication and key agreement protocol using smart card. For illustrating the security of our protocol, we used the security protocol analysis tools of AVISPA and Scyther to prove that the protocol can defend against various existing attacks. We will further analyze the interaction between participants authentication path to ensure security protection from simulated attacks detailedly. In addition, based on the comparison of security functions and computing performance, our protocol is superior to the other two related protocols. As a result, the enhanced protocol will be efficient and secure in distributed cloud computing architecture for smart city.
Giaridia lamblia was long considered to be one of the most primitive eukaryotes and to lie close to the transition between prokaryotes and eukaryotes, but several supporting features, such as lack of mitochondrion and Golgi, have been challenged recently. It was also reported previously that G. lamblia lacked nucleolus, which is the site of pre-rRNA processing and ribosomal assembling in the other eukaryotic cells. Here, we report the identification of the yeast homolog gene, krr1, in the anucleolate eukaryote, G. lamblia. The krr1 gene, encoding one of the pre-rRNA processing proteins in yeast, is actively transcribed in G. lamblia. The deduced protein sequence of G. lamblia krr1 is highly similar to yeast KRR1p that contains a single-KH domain. Our database searches indicated that krr1 genes actually present in diverse eukaryotes and also seem to present in Archaea. However, only the eukaryotic homologs, including that of G. lamblia, have the single-KH domain, which contains the conserved motif KR(K)R. Fibrillarin, another important pre-rRNA processing protein has also been identified previously in G. lamblia. Moreover, our database search shows that nearly half of the other nucleolus-localized protein genes of eukaryotic cells also have their homologs in Giardia. Therefore, we suggest that a common mechanism of pre-RNA processing may operate in the anucleolate eukaryote G. lamblia and in the other eukaryotes and that like the case of "lack of mitochondrion," "lack of nucleolus" may not be a primitive feature, but a secondarily evolutionary condition of the parasite.
Nowadays, it is still a major challenge to design a secure cross-domain authentication protocol for heterogeneous wireless networks with different security parameters. As a new technology, blockchain has attracted people’s attention because of its tamper-proof and decentralized characteristics. In this paper, we propose a cross-domain authentication and key agreement system based on smart contract of blockchains. Public keys of the nodes are managed using the smart contracts, and the system parameters are confirmed by contract query. On this basis, a cross-domain authentication and key agreement protocol is designed. In this protocol, roaming users can select temporary authentication parameters according to the system parameters of the roaming domain to complete authentication and key agreement, and users are anonymous in the process. Security of the protocol is demonstrated under the CK model, and two formal analysis tools are used to further analyze the protocol. Since the protocol does not have complex cryptographic operations and certificate verification, it has lower computational and communication overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.