Intelligent reflecting surfaces (IRSs) improve both the bandwidth and energy efficiency of wideband communication systems by using low-cost passive elements for reflecting the impinging signals with adjustable phase shifts. To realize the full potential of IRS-aided systems, having accurate channel state information (CSI) is indispensable, but it is challenging to acquire, since these passive devices cannot carry out transmit/receive signal processing. The existing channel estimation methods conceived for wideband IRS-aided communication systems only consider the channel's frequency selectivity, but ignore the effect of beam squint, despite its severe performance degradation. Hence we fill this gap and conceive wideband channel estimation for IRS-aided communication systems by explicitly taking the effect of beam squint into consideration. We demonstrate that the mutual correlation function between the spatial steering vectors and the cascaded two-hop channel reflected by the IRS has two peaks, which leads to a pair of estimated angles for a single propagation path, due to the effect of beam squint. One of these two estimated angles is the frequency-independent 'actual angle', while the other one is the frequency-dependent 'false angle'. To reduce the influence of false angles on channel estimation, we propose a twin-stage orthogonal matching pursuit (TS-OMP) algorithm, where the path angles of the cascaded two-hop channel reflected by the IRS are obtained in the first stage, while the propagation gains and delays are obtained in the second stage. Moreover, we propose a bespoke pilot design by exploiting the specific the characteristics of the mutual correlation function and cross-entropy theory for achieving an improved channel estimation performance. Our simulation results demonstrate the superiority of the proposed channel estimation algorithm and pilot design over their conventional counterparts.
The densely packed antennas of millimeter-Wave (mmWave) MIMO systems are often blocked by the rain, snow, dust and even by fingers, which will change the channel's characteristics and degrades the system's performance. In order to solve this problem, we propose a cross-entropy inspired antenna array diagnosis detection (CE-AAD) technique by exploiting the correlations of adjacent antennas, when blockages occur at the transmitter. Then, we extend the proposed CE-AAD algorithm to the case, where blockages occur at transmitter and receiver simultaneously. Our simulation results show that the proposed CE-AAD algorithm outperforms its traditional counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.