Zeolites with molecular dimension pores are widely used in petrochemical and fine‐chemical industries. While traditional solvothermal syntheses suffer from environmental, safety, and efficiency issues, the newly developed solvent‐free synthesis is limited by zeolite crystal aggregation. Herein, we report well‐dispersed and faceted silicalite ZSM‐5 zeolite crystals obtained using a solvent‐free synthesis facilitated by graphene oxide (GO). The selective interactions between the GO sheets and different facets, which are confirmed by molecular dynamics simulations, result in oriented growth of the ZSM‐5 crystals along the c‐axis. More importantly, the incorporation of GO sheets into the ZSM‐5 crystals leads to the formation of mesopores. Consequently, the faceted ZSM‐5 crystals exhibit hierarchical pore structures. This synthetic method is superior to conventional approaches because of the features of the ZSM‐5 zeolite.
Zeolites with molecular dimension pores are widely used in petrochemical and fine-chemical industries. While traditional solvothermal syntheses suffer from environmental, safety, and efficiency issues, the newly developed solvent-free synthesis is limited by zeolite crystal aggregation. Herein, we report well-dispersed and faceted silicalite ZSM-5 zeolite crystals obtained using a solvent-free synthesis facilitated by graphene oxide (GO). The selective interactions between the GO sheets and different facets, which are confirmed by molecular dynamics simulations, result in oriented growth of the ZSM-5 crystals along the c-axis. More importantly, the incorporation of GO sheets into the ZSM-5 crystals leads to the formation of mesopores. Consequently, the faceted ZSM-5 crystals exhibit hierarchical pore structures. This synthetic method is superior to conventional approaches because of the features of the ZSM-5 zeolite.
The morphology of electrode materials plays an important role in determining the performance of lithium-ion batteries (LIBs). However, studies on determining the most favorable morphology for high-performance LIBs have rarely been reported. In this study, a series of F-doped SnO (F-SnO and F-SnO) materials with various morphologies was synthesized using ethylenediamine as a structure-directing agent in a facile hydrothermal process. During the hydrothermal process, the F-SnO was embedded in situ into the three-dimensional (3D) architecture of reduced graphene oxide (RGO) to form F-SnO @RGO composites. The morphologies and nanostructures of F-SnO , i.e., F-SnO nanocrystals, F-SnO nanosheets, and F-SnO aggregated particles, were fully characterized using electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Electrochemical characterization indicated that the F-SnO nanocrystals uniformly distributed in the 3D RGO architecture exhibited higher specific capacity, better rate performance, and longer cycling stability than the F-SnO with other morphologies. These excellent electrochemical performances were attributed to the uniform distribution of the F-SnO nanocrystals, which significantly alleviated the volume changes of the electrode material and shortened the Li ion diffusion path during lithiation/delithiation processes. The F-SnO@RGO composite composed of uniformly distributed F-SnO nanocrystals also exhibited excellent rate performance, as the specific capacities were measured to be 1158 and 648 mA h g at current densities of 0.1 and 5 A g, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.