The performance of convolutional neural network- (CNN-) based object detection has achieved incredible success. Howbeit, existing CNN-based algorithms suffer from a problem that small-scale objects are difficult to detect because it may have lost its response when the feature map has reached a certain depth, and it is common that the scale of objects (such as cars, buses, and pedestrians) contained in traffic images and videos varies greatly. In this paper, we present a 32-layer multibranch convolutional neural network named MBNet for fast detecting objects in traffic scenes. Our model utilizes three detection branches, in which feature maps with a size of 16 × 16, 32 × 32, and 64 × 64 are used, respectively, to optimize the detection for large-, medium-, and small-scale objects. By means of a multitask loss function, our model can be trained end-to-end. The experimental results show that our model achieves state-of-the-art performance in terms of precision and recall rate, and the detection speed (up to 33 fps) is fast, which can meet the real-time requirements of industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.