Deep learning method have been offering promising solutions for medical image processing, but failing to understand what features in the input image are captured and whether certain artifacts are mistakenly included in the model, thus create crucial problems in generalizability of the model. We targeted a common issue of this kind caused by manual annotations appeared in medical image. These annotations are usually made by the doctors at the spot of medical interest and have adversarial effect on many computer vision AI tasks. We developed an inpainting algorithm to remove the annotations and recover the original images. Besides we applied variational information bottleneck method in order to filter out the unwanted features and enhance the robustness of the model. Our impaiting algorithm is extensively tested in object detection in thyroid ultrasound image data. The mAP (mean average precision, with IoU = 0.3) is 27% without the annotation removal. The mAP is 83% if manually removed the annotations using Photoshop and is enhanced to 90% using our inpainting algorithm. Our work can be utilized in future development and evaluation of artificial intelligence models based on medical images with defects.
Background:
Currently, follicular thyroid carcinoma (FTC) has a relatively low incidence with a lack of effective preoperative diagnostic means. To reduce the need for invasive diagnostic procedures and to address information deficiencies inherent in a small dataset, we utilized interpretable foreground optimization network deep learning to develop a reliable preoperative FTC detection system.
Methods:
In this study, a deep learning model (FThyNet) was established using preoperative ultrasound images. Data on patients in the training and internal validation cohort (n=432) were obtained from Ruijin Hospital, China. Data on patients in the external validation cohort (n=71) were obtained from four other clinical centers. We evaluated the predictive performance of FThyNet and its ability to generalize across multiple external centers and compared the results yielded with assessments from physicians directly predicting FTC outcomes. In addition, the influence of texture information around the nodule edge on the prediction results was evaluated.
Results:
FThyNet had a consistently high accuracy in predicting FTC with an area under the receiver operating characteristic curve (AUC) of 89.0% [95% CI 87.0–90.9]. Particularly, the AUC for grossly invasive FTC reached 90.3%, which was significantly higher than that of the radiologists (56.1% [95% CI 51.8–60.3]). The parametric visualization study found that those nodules with blurred edges and relatively distorted surrounding textures were more likely to have FTC. Furthermore, edge texture information played an important role in FTC prediction with an AUC of 68.3% [95% CI 61.5–75.5], and highly invasive malignancies had the highest texture complexity.
Conclusion:
FThyNet could effectively predict FTC, provide explanations consistent with pathological knowledge, and improve clinical understanding of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.