WRKY transcription factors (TFs) play crucial roles in biotic and abiotic stress responses. However, their roles in thermal response are still largely elusive, especially in rice. In this study, we revealed the functions of WRKY10 TF and VQ8 protein containing VQ motif in rice thermotolerance. Overexpression of WRKY10 or loss of VQ8 function increases thermosensitivity, whereas conversely, overexpression of VQ8 or loss of WRKY10 function enhances thermotolerance. Overexpression of WRKY10 accelerates reactive oxygen species (ROS) accumulation in chloroplasts and apoplasts, and it also induces the expression of heat shock TF and protein genes. We also found that WRKY10 regulates nuclear DNA fragmentation and hypersensitive response by modulating NAC4 TF expression. The balance between destructive and protective responses in WRKY10‐overexpression plant is more fragile and more easily broken by heat stress compared with wild type. In vitro and in vivo assays revealed that VQ8 interacts with WRKY10 and inhibits the transcription activity via repressing its DNA‐binding activity. Our study demonstrates that WRKY10 negatively regulates thermotolerance by modulating the ROS balance and the hypersensitive response and that VQ8 functions antagonistically to positively regulate thermotolerance. The functional module of WRKY10‐VQ8 provides safe and effective regulatory mechanisms in the heat stress response.
Arabidopsis MORE AXILLARY GROWTH2 (MAX2) is a key component in the strigolactone (SL) and karrikin (KAR) signaling pathways and regulates the degradation of SUPPRESSOR OF MAX2 1/ SMAX1-like (SMAX1/SMXL) proteins, which are transcriptional co-repressors that regulate plant architecture, as well as abiotic and biotic stress responses. The max2 mutation reduces resistance against Pseudomonas syringae pv. tomato (Pst). To uncover the mechanism of MAX2-mediated resistance, we evaluated the resistance of various SL and KAR signaling pathway mutants. The resistance of SL-deficient mutants and of dwarf 14 (d14) was similar to that of the wild-type, whereas the resistance of the karrikin insensitive 2 (kai2) mutant was compromised, demonstrating that the KAR signaling pathway, not the SL signaling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.