Pulsed power technology, whereas the electrical energy stored in a relative long period is released in much shorter timescale, is an efficient method to create high energy density physics (HEDP) conditions in laboratory. Around the beginning of this century, China Academy of Engineering Physics (CAEP) began to build some experimental facilities for HEDP investigations, among which the Primary Test Stand (PTS), a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time ∼90 ns, is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion (ICF) researches. PTS is the first pulsed power facility beyond 10 TW in China. Therefore, all the technologies have to be demonstrated, and all the engineering issues have to be overcome. In this article, the research outline, key technologies and the preliminary HEDP experiments are reviewed. Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.
An unfolding algorithm using parabolic B-splines to smoothly reconstruct the soft x-ray spectra from the measurements of a filtered x-ray diode array is proposed. This array has been fabricated for the study of the soft x ray emitted by Z-pinch plasma. Unfolding results show that for the simulated noise-free blackbody spectra with temperature ranging from 20 to 250 eV, both the spectra and the total power are accurately recovered. Typical experimental waveforms along with the unfolded spectra and total power of x rays are presented. Possible defects due to the adoption of parabolic B-splines instead of conventionally used histograms are discussed.
Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.