Background: The study objective was to evaluate a training program and a training model for pediatric ultrasound-guided vascular cannulation (USGVC) by inexperienced operators. Methods: An observational descriptive study was conducted at the pediatric intensive care unit of a level-III hospital. The study protocol comprised the following parts: (1) pretraining test; (2) theory and practice training session consisting of an explanation of basic vascular ultrasound concepts plus performing vascular cannulation in a model; (3) posttraining test; and (4) evaluation of the training model. Results: A total of 25 health-care professionals participated in the study. All of them possessed the skills to locate vessels and ultrasound planes, and they performed USGVC using the training model. On a 1–5 scale, the model was rated to have 87.6% fidelity with real pediatric patients; the best regarded aspect of it was utility (93%). Differences were found between pre- and post-training scores: 2.72 ± 0.84 versus 4.60 ± 0.50; P < 0.001 (95% confidence interval: −2.28, −1.47). Altogether, 300 ultrasound-guided cannulation procedures were carried out (12 per participant) distributed along the longitudinal axis in plane and the transverse axis out of plane, with 150 punctures in each of them. The success rate for USGVC in the training model was 79.7%, the mean time for the procedure was 115.6 ± 114.9 s, and the mean time for achieving successful cannulation was 87.69 ± 82.81 s. The mean number of trials needed for successful USGVC was 1.49 ± 0.86. Conclusion: After undergoing the theory–practice training, participants: (a) improved their knowledge of ultrasound-guided vascular access; (b) positively evaluated the USGVC training model, in particular its utility and fidelity as compared with cannulation in pediatric patients; and (c) achieved a high USGVC success rate in a relatively short time.
Simulation has been defined as the representation of something as real. It is necessary for performing the ultrasound-guided vascular cannulation technique correctly. The use of training models for diagnostic or therapeutic procedures: improves the quality of care for patients; decreases stress level that it can produce the realization of a new technique directly on the patient and; can be used as many times as the model is reproduced, also serving as a method for the resolution of some problems that may appear related to the in vivo technique. The evidence shows that simulation plays an important role in the acquisition of skills to perform invasive procedures. The use of ultrasound in vascular accesses whether peripheral or central, arterial, or venous, improves the success rate in the canalization and reduce the complications derived from the technique in certain critical situations (coagulopathy, thrombocytopenia, obesity, etc.) specially in pediatric patients given the variability of depth and diameter of its vessels with respect to the adult population. To facilitate learning in the technique of echoguided puncture, a training model is presented that is easily reproducible, economical and with a high fidelity in relation to the punctures performed on the patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.