This paper deals with the experimental investigation of CI engine run with multiple biodiesels –diesel blended and neat diesel fuels along with the energy-exergy analysis to evaluate quantitative and qualitative data for determining energy and exergy efficiencies, losses and exergy destruction. Second-generation biodiesels are utilised to conduct experiments on a DICI engine with constant speed and full throttle condition at a compression ratio of 17.5:1. Energy analysis is based on experimental data, and exergy analysis is performed with the help of derived formula using chemical and molecular structures. Variation in the performance, combustion, and emission parameters for B0, B10, and B20 blends reveals that BTE, AFR, η(mech.), η(vol.), CP, and CO decreases with the increase in BSEC, EGT, MGT, RPR, NHR, CO2, HC, and NOx. Energy-exergy analysis shows that the combustion and exergetic efficiencies are maximum for the B20 blend (+87.73%) and (+52.04%) at 2.5 kW and 3.3 kW BPs. Exergy destructed is observed to be three-fifth of total available exergy. Half of the heat supplied is carried away by cooling water while one-third of heat is converted into brake power, and the remaining heat is lost in exhaust gases and unaccounted losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.