The T(-13910) variant located in the enhancer element of the lactase (LCT) gene correlates perfectly with lactase persistence (LP) in Eurasian populations whereas the variant is almost nonexistent among Sub-Saharan African populations, showing high prevalence of LP. Here, we report identification of two new mutations among Saudis, also known for the high prevalence of LP. We confirmed the absence of the European T(-13910) and established two new mutations found as a compound allele: T/G(-13915) within the -13910 enhancer region and a synonymous SNP in the exon 17 of the MCM6 gene T/C(-3712), -3712 bp from the LCT gene. The compound allele is driven to a high prevalence among Middle East population(s). Our functional analyses in vitro showed that both SNPs of the compound allele, located 10 kb apart, are required for the enhancer effect, most probably mediated through the binding of the hepatic nuclear factor 1 alpha (HNF1 alpha). High selection coefficient (s) approximately 0.04 for LP phenotype was found for both T(-13910) and the compound allele. The European T(-13910) and the earlier identified East African G(-13907) LP allele share the same ancestral background and most likely the same history, probably related to the same cattle domestication event. In contrast, the compound Arab allele shows a different, highly divergent ancestral haplotype, suggesting that these two major global LP alleles have arisen independently, the latter perhaps in response to camel milk consumption. These results support the convergent evolution of the LP in diverse populations, most probably reflecting different histories of adaptation to milk culture.
A single-nucleotide variant, C/T(-13910), located 14 kb upstream of the lactase gene (LCT), has been shown to be completely correlated with lactase persistence (LP) in northern Europeans. Here, we analyzed the background of the alleles carrying the critical variant in 1,611 DNA samples from 37 populations. Our data show that the T(-13910) variant is found on two different, highly divergent haplotype backgrounds in the global populations. The first is the most common LP haplotype (LP H98) present in all populations analyzed, whereas the others (LP H8-H12), which originate from the same ancestral allelic haplotype, are found in geographically restricted populations living west of the Urals and north of the Caucasus. The global distribution pattern of LP T(-13910) H98 supports the Caucasian origin of this allele. Age estimates based on different mathematical models show that the common LP T(-13910) H98 allele (approximately 5,000-12,000 years old) is relatively older than the other geographically restricted LP alleles (approximately 1,400-3,000 years old). Our data about global allelic haplotypes of the lactose-tolerance variant imply that the T(-13910) allele has been independently introduced more than once and that there is a still-ongoing process of convergent evolution of the LP alleles in humans.
Oxytocin is released from supraoptic magnocellular neurones and is thought to act at presynaptic receptors to inhibit transmitter release. We now show that this effect is mediated by endocannabinoids, but that oxytocin nonetheless plays an important role in endocannabinoid signalling. WIN55,212-2, a cannabinoid receptor agonist, mimicked the action of oxytocin and occluded oxytocin-induced presynaptic inhibition. The cannabinoid action is at the presynaptic terminal as shown by alteration in paired pulse ratio, a reduction in miniature EPSC frequency and immunohistochemical localization of CB 1 receptors on presynaptic terminals. AM251, a CB 1 receptor antagonist, blocked both the WIN55,212-2 and the oxytocin-induced presynaptic inhibition of EPSCs. Depolarization of postsynaptic magnocellular neurones (which contain fatty acid amide hydrolase, a cannabinoid catabolic enzyme) caused a transient inhibition of EPSCs that could be blocked by both the AM251 and Manning compound, an oxytocin/vasopressin receptor antagonist. This indicates that somatodendritic peptide release and action on previously identified autoreceptors facilitates the release of endocannabinoids that act as mediators of presynaptic inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.