In the past decades, a few synergistic feature selection algorithms have been published, which includes Cooperative Index (CI) and K-Top Scoring Pair (k-TSP). These algorithms consider the synergistic behavior of features when they are included in a feature panel. Although promising results have been shown for these algorithms, there is lack of a comprehensive and fair comparison with other feature selection algorithms across a large number of microarray datasets in terms of classification accuracy and computational complexity. There is a need in evaluating their performance and reducing the complexity of such algorithms. We compared the performance of synergistic feature selection algorithms with 11 other commonly used algorithms based on 22 microarray gene expression binary class datasets. The evaluation confirms that synergistic algorithms such as CI and k-TSP will gradually increase the classification performance as more features are used in the classifiers. Also, in order to cut down computational cost, we proposed a new feature selection ranking score called Positive Synergy Index (PSI). Testing results show that features selected using PSI as well as synergistic feature selection algorithms provide better performance compared to with all other methods, while PSI has a computational complexity significantly lower than that of other synergistic algorithms.
Epitranscriptome is an exciting area that studies different types of modifications in transcripts, and the prediction of such modification sites from the transcript sequence is of significant interest. However, the scarcity of positive sites for most modifications imposes critical challenges for training robust algorithms. To circumvent this problem, we propose MR-GAN, a generative adversarial network (GAN)-based model, which is trained in an unsupervised fashion on the entire pre-mRNA sequences to learn a low-dimensional embedding of transcriptomic sequences. MR-GAN was then applied to extract embeddings of the sequences in a training dataset we created for nine epitranscriptome modifications, namely, m 6 A, m 1 A, m 1 G, m 2 G, m 5 C, m 5 U, 2 ′-O-Me, pseudouridine (), and dihydrouridine (D), of which the positive samples are very limited. Prediction models were trained based on the embeddings extracted by MR-GAN. We compared the prediction performance with the one-hot encoding of the training sequences and SRAMP, a state-of-the-art m 6 A site prediction algorithm, and demonstrated that the learned embeddings outperform one-hot encoding by a significant margin for up to 15% improvement. Using MR-GAN, we also investigated the sequence motifs for each modification type and uncovered known motifs as well as new motifs not possible with sequences directly. The results demonstrated that transcriptome features extracted using unsupervised learning could lead to high precision for predicting multiple types of epitranscriptome modifications, even when the data size is small and extremely imbalanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.