The Hs1(pro-1) locus confers resistance to the beet cyst nematode (Heterodera schachtii Schmidt), a major pest in the cultivation of sugar beet (Beta vulgaris L.). The Hs1(pro-1) gene was cloned with the use of genome-specific satellite markers and chromosomal break-point analysis. Expression of the corresponding complementary DNA in a susceptible sugar beet conferred resistance to infection with the beet cyst nematode. The native Hs1(pro-1) gene, expressed in roots, encodes a 282-amino acid protein with imperfect leucine-rich repeats and a putative membrane-spanning segment, features similar to those of disease resistance genes previously cloned from higher plants.
The Hs1pro-1 gene confers resistance to the beet cyst nematode Heterodera schachtii in sugar beet (Beta vulgaris L.) on the basis of a gene-for-gene relationship. RNA-gel blot analysis revealed that the transcript of Hs1pro-1 was present in uninfected roots of resistant beet at low levels but increased by about fourfold one day after nematode infection. Treatments of plants with external stimuli including salicylic acid, jasmonic acid, gibberellic acid and abscisic acid as well as wounding or salt stress did not result in changes in the gene transcription, indicating de novo transcription of Hs1pro-1 upon nematode infection specifically. To study transcriptional regulation of Hs1pro-1 expression at the cellular level, a 3082 bp genomic fragment representing the Hs1pro-1 promoter, isolated from the YAC-DNA housing the Hs1pro-1 gene, was fused to the beta-glucuronidase reporter gene (1832prm1::GUS) and transformed into susceptible beet roots and Arabidopsis plants, respectively. Fluorometric and histochemical GUS assays on transgenic beet roots and Arabidopsis plants carrying the 1832prm1::GUS construct demonstrated that the Hs1pro-1 promoter is functional in both species and drives a nematode responsive and feeding site-specific GUS-expression. GUS activity was detected as early as at initiation of the nematode feeding sites and GUS staining was restricted to the nematode feeding sites. To delineate the regulatory domains of the Hs1pro-1 promoter, fusion genes with various 5' deletions of the Hs1pro-1 promoter and the GUS gene were constructed and analysed in transgenic beet roots as well. Cis elements responsible for feeding site-specific gene expression reside between -355 and +247 from the transcriptional initiation site of Hs1pro-1 whereas an enhancer region necessary for higher gene expression is located between -1199 and -705 of the promoter. The Hs1pro-1 promoter drives a nematode feeding site-specific GUS expression in both sugar beet and Arabidopsis suggesting a conserved mechanism of regulation of Hs1pro-1 expression in these two species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.