Background: Whole-genome sequencing (WGS) is a viable and financially feasible tool for timely and comprehensive diagnosis of drug resistance in developed countries. With the increase in the incidence of multidrug-resistant tuberculosis (MDR-TB), second-line anti-TB drugs are gaining importance. However, genetic resistance to second-line anti-TB drugs based on WGS has not been fully studied. Methods: We randomly selected 100 MDR-TB and 10 non-MDR-TB isolates from a hospital in Zhejiang Province, China. Drug susceptibility tests against 13 anti-TB drugs were performed, and 34 drug resistance-related genes were analyzed using WGS in all isolates. For each drug, the accuracy, sensitivity, specificity, and positive and negative predictive values of WGS were compared with those of the conventional drug susceptibility test. Results: The overall sensitivity and specificity for WGS were respectively, 99.0 and 100.0% for isoniazid (INH), 99.0 and 100.0% for rifampicin (RIF), 94.8 and 65.3% for ethambutol (EMB), 86.2 and 84.4% for pyrazinamide (PZA), 95.6 and 95.6% for levofloxacin (LFX), 89.5 and 65.3% for moxifloxacin (MFX), 91.3 and 95.1% for streptomycin (SM), 90.9 and 99.0% for kanamycin, 90.9 and 100.0% for amikacin, 88.9 and 98.0% for capreomycin, 87.0 and 85.1% for prothionamide (PTO), 85.7 and 99.0% for para-aminosalicylic acid (PAS), and 66.7 and 95.9% for clofazimine (CLO). Conclusions: WGS is a promising approach to predict resistance to INH, RIF, PZA, LFX, SM, second-line injectable drugs (SLIDs), and PTO with satisfactory accuracy, sensitivity, and specificity of over 85.0%. The specificity of WGS in diagnosing resistance to EMB, and high-level resistance to MFX (2.0 mg/L) needs to be improved.
Few studies have focused on the reasons for the low cure rate of multidrug-resistant tuberculosis in China and within-host evolution during treatment, which is of great significance for improving clinical treatment regimens. Acquired resistance events were common during the ineffective treatment, among which resistance to amikacin and high-level moxifloxacin were the most common.
Background Recently, Mycobacterium avium complex (MAC) infections have been increasing, especially in immunocompromised and older adults. The rapid increase has triggered a global health concern due to limited therapeutic strategies and adverse effects caused by long-term medication. To provide more evidence for the treatment of MAC, we studied the in vitro inhibitory activities of 17 antimicrobial agents against clinical MAC isolates. Results A total of 111 clinical MAC isolates were enrolled in the study and they were identified as M. intracellulare, M. avium, M. marseillense, M. colombiense, M. yongonense, and two isolates could not be identified at the species level. MAC strains had relatively low (0–21.6%) resistance to clarithromycin, amikacin, bedaquiline, rifabutin, streptomycin, and clofazimine, and the resistant rates to isoniazid, rifampin, linezolid, doxycycline, and ethionamide were very high (72.1–100%). In addition, M. avium had a significantly higher resistance rate than that of M. intracellulare for ethambutol (92.3% vs 40.7%, P < 0.001), amikacin (15.4% vs 1.2%, P = 0.049), and cycloserine (69.2% vs 25.9%, P = 0.004). Conclusions Our results supported the current usage of macrolides, rifabutin, and aminoglycosides in the regimens for MAC infection, and also demonstrated the low resistance rate against new drugs, such as clofazimine, tedizolid, and bedaquiline, suggesting the possible implementation of these drugs in MAC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.