Small-molecule antagonists disable discrete biochemical properties of protein targets. For multi-domain protein targets, the pharmacologic consequence of drug action is limited by selective disruption of one domain-specific activity. More broadly, target inhibition is kinetically limited by the durability and degree of target engagement. These features of traditional drug molecules are challenging to the development of inhibitors targeting transcription factors and chromatin-associated epigenetic proteins, which function as multi-domain biomolecular scaffolds and generally feature rapid association and dissociation kinetics. We therefore devised a chemical strategy to prompt ligand-dependent target protein degradation, via chemical conjugation with derivatized phthalimides that hijack the function of the Cereblon E3 ubiquitin ligase complex. Using this approach, we converted an acetyl-lysine competitive antagonist that displaces BET bromodomains from chromatin (JQ1) to a phthalimide-conjugated ligand that prompts immediate Cereblon-dependent BET protein degradation (dBET1). Expression proteomics confirms high specificity for BET family members BRD2, BRD3 and BRD4 among 7429 proteins detected. Degradation of BET bromodomains is associated with a more rapid and robust apoptotic response compared to bromodomain inhibition in primary human leukemic blasts, and dBET1 exhibits in vivo efficacy in a human leukemia xenograft. The reach of this approach is illustrated by a second series of probes that degrade the cytosolic signaling protein, FKBP12. Together, these findings identify a facile and general new strategy to control target protein stability, with implications for approaching previously intractable protein targets.
The structure of the SHP-2 tyrosine phosphatase, determined at 2.0 angstroms resolution, shows how its catalytic activity is regulated by its two SH2 domains. In the absence of a tyrosine-phosphorylated binding partner, the N-terminal SH2 domain binds the phosphatase domain and directly blocks its active site. This interaction alters the structure of the N-SH2 domain, disrupting its phosphopeptide-binding cleft. Conversely, interaction of the N-SH2 domain with phosphopeptide disrupts its phosphatase recognition surface. Thus, the N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. Recognition of bisphosphorylated ligands by the tandem SH2 domains is an integral element of this switch; the C-terminal SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation.
Epigenetic inheritance in mammals is characterized by high-fidelity replication of CpG methylation patterns during development. UHRF1 (also known as ICBP90 in humans and Np95 in mouse) is an E3 ligase important for the maintenance of global and local DNA methylation in vivo. The preferential affinity of UHRF1 for hemi-methylated DNA over symmetrically methylated DNA by means of its SET and RING-associated (SRA) domain and its association with the maintenance DNA methyltransferase 1 (DNMT1) suggests a role in replication of the epigenetic code. Here we report the 1.7 A crystal structure of the apo SRA domain of human UHRF1 and a 2.2 A structure of its complex with hemi-methylated DNA, revealing a previously unknown reading mechanism for methylated CpG sites (mCpG). The SRA-DNA complex has several notable structural features including a binding pocket that accommodates the 5-methylcytosine that is flipped out of the duplex DNA. Two specialized loops reach through the resulting gap in the DNA from both the major and the minor grooves to read the other three bases of the CpG duplex. The major groove loop confers both specificity for the CpG dinucleotide and discrimination against methylation of deoxycytidine of the complementary strand. The structure, along with mutagenesis data, suggests how UHRF1 acts as a key factor for DNMT1 maintenance methylation through recognition of a fundamental unit of epigenetic inheritance, mCpG.
Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure∶function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform specificity.Enhanced version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a Web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.