Purpose Adiponectin is an insulin-sensitizing and anticarcinogenic hormone that is encoded by a gene on chromosome 3. Here, we analyzed the expression of adiponectin and its receptor Adipor1 in primary uveal melanoma (UM) with regard to the monosomy-3 status and clinical factors, as well as the physiological response of UM cells to adiponectin. Methods Immunohistochemistry was performed on the primary UM of 34 patients. Circulating melanoma cells (CMC) were isolated by immunomagnetic enrichment. Monosomy-3 was evaluated by Immuno-FISH. Gene expression was analyzed using the RNAseq data of The Cancer Genome Atlas study. Cultures of choroidal melanocytes and UM were established from the samples of two patients. The proliferative potential of the UM cell lines Mel-270 and OMM-2.5 was determined by immunocytochemistry, immunoblotting, cell cycle analysis, nucleolar staining, and adenosine triphosphate (ATP) levels. Results UM with monosomy-3 exhibited a lower immunoreactivity for adiponectin and Adipor1, which was associated with monosomy-3-positive CMC and the development of extraocular growth or metastases. Both proteins were more abundant in the irradiated tumors and present in the cultured cells. Gene expression profile indicated the impairment of adiponectin-mediated signaling in the monosomy-3 tumors. Adiponectin induced a significant decline in the ATP levels, Ki-67 expression, cells in the G2/M phase, and nucleolar integrity in UM cultures. Conclusions Adiponectin deficiency appears to enhance the metastatic potential of the UM cells with monosomy-3 and the termination of tumor dormancy. Counteracting insulin resistance and improving the serum adiponectin levels might therefore be a valuable approach to prevent or delay the UM metastases.
Monosomy-3 in uveal melanoma (UM) cells increases the risk of fatal metastases. The gene encoding the low-affinity glucose transporter GLUT2 resides on chromosome 3q26.2. Here, we analyzed the expression of the glucose transporters GLUT1, GLUT2, and GLUT3 with regard to the histological and clinical factors by performing immunohistochemistry on the primary tumors of n = 33 UM patients. UMs with monosomy-3 exhibited a 57% lower immunoreactivity for GLUT2 and a 1.8×-fold higher ratio of GLUT1 to total GLUT1-3. The combined levels of GLUT1-3 proteins were reduced in the irradiated but not the non-irradiated tumors with monosomy-3. GLUT3 expression was stronger in the irradiated samples with disomy-3 versus monosomy-3, but the ratio of the GLUT3 isoform to total GLUT1-3 did not differ with regard to the monosomy-3 status in the irradiated or non-irradiated subgroups. Systemic metastases were associated with the presence of monosomy-3 in the primary and circulating tumor cells as well as a higher GLUT1 ratio. Upregulation of the high-affinity glucose transporter GLUT1 possibly as a compensation for the low-affinity isoform GLUT2 may be enhancing the basal glucose uptake in the UM cells with monosomy-3. Prevention of hyperglycemia might, therefore, be a valuable approach to delay the lethal UM metastases.
The prolonged storage of glucose as glycogen can promote the quiescence of tumor cells, whereas the accumulation of an aberrant form of glycogen without the primer protein glycogenin can induce the metabolic switch towards a glycolytic phenotype. Here, we analyzed the expression of n = 67 genes involved in glycogen metabolism on the uveal melanoma (UM) cohort of the Cancer Genome Atlas (TCGA) study and validated the differentially expressed genes in an independent cohort. We also evaluated the glycogen levels with regard to the prognostic factors via a differential periodic acid-Schiff (PAS) staining. UMs with monosomy-3 exhibited a less glycogenetic and more insulin-resistant gene expression profile, together with the reduction of glycogen levels, which were associated with the metastases. Expression of glycogenin-1 (Locus: 3q24) was lower in the monosomy-3 tumors, whereas the complementary isoform glycogenin-2 (Locus: Xp22.33) was upregulated in females. Remarkably, glycogen was more abundant in the monosomy-3 tumors of male versus female patients. We therefore provide the first evidence to the dysregulation of glycogen metabolism as a novel factor that may be aggravating the course of UM particularly in males.
The article examines the use of syntactic stylistic devices in scientific prose. Sentences with emphatic do have been singled out among the great number of syntactic stylistic devices. The numerous examples with the emphatic do in English scientific prose confirm the hypotheses put forward by R. Budagov, S.S. Gusev, N.M. Razinkina, S.K. Gasparyan that a great number of stylistic devices are used in the language of science. The emphatic do in English scientific prose is not confined to the emphatic function only. The individuality of the author can often be easily traced in these examples. Through the use of the constructions with the emphatic do, the author expresses his opinion towards the idea stated. These structures often turn into an integral part of the language of science. Combined with other stylistic devices and expressive means they help the author to exert certain influence on the reader.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.